Microsize antibodies for $99 | Learn More >>

Product listing: SirT6 Antibody, UniProt ID Q8N6T7 #2590 to SnoN Antibody, UniProt ID P12757 #4973

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The Silent Information Regulator (Sir2) family of genes is a highly conserved group of genes that encode nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylases, also known as class III histone deacetylases. The first discovered and best characterized of this family is Saccharomyces cerevisiae Sir2, which is involved in silencing of mating type loci, telomere maintenance, DNA damage response, and cell aging (1). SirT6, a mammalian homolog of Sir2, is a nuclear, chromatin-associated protein that promotes the normal maintenance of genome integrity mediated by the base excision repair (BER) pathway (2-4). The BER pathway repairs single-stranded DNA lesions that arise spontaneously from endogenous alkylation, oxidation, and deamination events. SirT6 deficient mice show increased sensitivity to DNA-damaging agents, including the alkylating agents MMS and H2O2 (2). In addition, these mice show genome instability with increased frequency of fragmented chromosomes, detached centromeres, and gaps (2). SirT6 may regulate the BER pathway by deacetylating DNA Polβ or other core components of the pathway (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: First identified as a pro-apoptotic protein that binds the cytoplasmic tail of the TNF receptor superfamily member CD27 (1), Siva-1 also binds several other TNFR family members including glucocorticoid-induced tumor necrosis factor receptor (GITR) and OX40 (1-3), as well as anti-apoptotic Bcl-2 family members Bcl-xL and Bcl-2 (4,5). Siva-1 is composed of a central death domain homology region, a C-terminal box-B-like ring finger followed by a zinc finger-like domain, and a unique N-terminal amphipathic helical region (SAH) (1,4). Studies have demonstrated that Siva-1 has the ability to induce cell death via both the extrinsic and intrinsic apoptotic pathways (1-8). The SAH domain of Siva-1 is responsible for the inhibition of the pro-survival activities of Bcl-xL and Bcl-2, leading to caspase-mediated cell death (4,5,8). Siva-1 plays a role in T cell signaling and homeostasis by inhibiting NF-κB activity, also resulting in apoptotic cell death (7,9). An alternative splice variant of Siva-1, Siva-2, lacks part of the SAH and death domains and is less effective at inducing apoptosis (1,2,5,8). Studies in xenografts have shown that down-regulation of Siva-1 inhibits tumorigenesis in response to p53 activation (10). Down-regulation of Siva-1 may also play a role in tumor metastasis through its regulation of the epithelial-mesenchymal transition (EMT) and cell migration (11). Overexpression of Siva-1 is implicated in several pathological conditions including acute ischemic injury (12) and Coxsackievirus infection (13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: p70 S6 kinase is a mitogen activated Ser/Thr protein kinase downstream of phosphoinositide-3 kinase (PI3K) and the target of rapamycin, FRAP/mTOR. p70 S6 kinase is required for cell growth and cell cycle progression (1,2). SKAR is a recently discovered substrate of S6K1. SKAR exists in two isoforms, α and β, the latter having a 29 amino acid truncation. Phosphorylation of SKAR is mitogen-induced and sensitive to rapamycin. Reduction in SKAR protein levels results in decreased cell size, further implicating SKAR in cell growth control (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: p70 S6 kinase is a mitogen activated Ser/Thr protein kinase downstream of phosphoinositide-3 kinase (PI3K) and the target of rapamycin, FRAP/mTOR. p70 S6 kinase is required for cell growth and cell cycle progression (1,2). SKAR is a recently discovered substrate of S6K1. SKAR exists in two isoforms, α and β, the latter having a 29 amino acid truncation. Phosphorylation of SKAR is mitogen-induced and sensitive to rapamycin. Reduction in SKAR protein levels results in decreased cell size, further implicating SKAR in cell growth control (3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the activation component E1; the activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2 and then from E2 to ubiquitin ligase E3 for final delivery to the epsilon-NH2 of the target protein lysine residue (1-3). Combinatorial interactions of different E2 and E3 proteins result in substrate specificity (4). Recent data suggests that activated E2 associates transiently with E3, and the dissociation is a critical step for ubiquitination (5). S phase kinase-associated protein 1 (Skp1) is a critical scaffold protein of the Skp1/CUL1/F-box (SCF) E3 ubiquitin ligase protein complex. Various F-box proteins (e.g., β-TrCP, Skp2) mediate an interaction with Skp1, via their defining and conserved domain of 40 amino acids, and with substrates to be ubiquitinated (e.g., β-catenin, p27) (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Members of the F-box family of proteins are characterized by the approximate 40 amino acid F-box motif named after cyclin F (1,2). F-box proteins constitute one of the four subunits of the Skp1-Cullin-F-box (SCF) ubiquitin ligase complex. The substrate specificity of SCF complexes is determined by the interchangeable F-box proteins, which act as adaptors by associating with phosphorylated substrate proteins and recruiting them to the SCF core. F-box proteins contain two fundamental domains: the F-box motif mediates binding to Skp1 and a leucine rich repeat (LRR) domain mediates substrate interactions.

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Members of the F-box family of proteins are characterized by the approximate 40 amino acid F-box motif named after cyclin F (1,2). F-box proteins constitute one of the four subunits of the Skp1-Cullin-F-box (SCF) ubiquitin ligase complex. The substrate specificity of SCF complexes is determined by the interchangeable F-box proteins, which act as adaptors by associating with phosphorylated substrate proteins and recruiting them to the SCF core. F-box proteins contain two fundamental domains: the F-box motif mediates binding to Skp1 and a leucine rich repeat (LRR) domain mediates substrate interactions.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: SLAMF6 (CD352/NTB-A) is a type-I transmembrane glycoprotein belonging to the signaling lymphocytic activation molecule (SLAM) family of immunomodulatory receptors. Like other members of the SLAM receptor family, SLAMF6 contains Ig-like domains within its extracellular region and conserved tyrosine-based signaling motifs within its intracellular domain that, when phosphorylated, bind to the SAP and EAT-2 signaling adaptors (1). SLAMF6 is expressed on the surface of multiple types of immune cells, such as those of the B, T, and NK lineages. Its activation is triggered by homotypic interactions involving its extracellular domain (1-3). Indeed, research studies have shown that in T-cells, SLAMF6 engagement facilitates activation and cytokine production (4). Similarly, homotypic ligand-mediated engagement of SLAMF6 on NK cells activates signaling cascades that drive proliferation, cytotoxicity, and cytokine production (1,5-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: SLC1A4, also known as ASCT1, is a neutral amino acid transporter. Its other name, ASCT1, was given because it mediates obligatory exchange of alanine, serine, cysteine, and threonine (1). SLC1A4 mediates the efflux of glutamate from the neuron into the synaptic junction via calcium-independent release, as well as mediating the efflux of L-serine from glial cells and its uptake by neurons (2). SLC1A4-mediated transport is shown to involve a symmetrical potassium-independent electroneutral exchange of neutral amino acids and sodium, such that the current activated during transport is carried only by chloride ions (3).

$260
100 µl
APPLICATIONS

Application Methods: Western Blotting

Background: Sleeping Beauty Transposase is part of a transposon system designed to allow viral free genetic insertion into vertebrate DNA. The system is composed of two components: a transposable element (transposon) that can carry DNA of interest, and a transposase that cuts and pastes the transposon into the genome. The transposase was identified from a consensus sequence of inactive Tc1/mariner-like transposase DNA sequences from salmonid fish. It was constructed by fusing and modifying two sequences from Atlantic salmon (Salmo salar) and one sequence from rainbow trout (Oncorhynchus mykiss). The transposon,T, was identified from a consensus sequence of extinct Tc-1 like transposons in salmonid fish (Tanichthys albonubes) (1). Further modifications of the system have been made since its initial construction: sequence changes to the transposase to fit better to an improved consensus sequence has increased its efficiency by 100 fold (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: SLK (Ste20-like Kinase) is a member of the germinal center kinase (GCK) family of proteins. SLK has a kinase domain located at the N terminus (1). The autophosphorylation of SLK at Thr183 and Ser189 is required for the upregulation of SLK kinase activity (1, 2). The protein also has a caspase cleavage site DXXD and a SH3 binding site PXXP located in the middle part of its sequence, and a regulatory C terminal coiled-coil domain for homodimerization and adaptor binding (1-4). SLK plays important roles in development, tissue regeneration and cancer cell migration by regulating several signaling pathways (5-7). SLK phosphorylates and activates ASK1 to induce downstream p38 phosphorylation and apoptosis (8,9). During cell cycle, SLK phosphorylates Polo-like kinase (PLK) at Thr210 to promote G2/M transition (10,11). SLK also promotes cell division by direct phosphorylation of ERMs and dynactin to activate microtubule reorganization and spindle orientation (12, 13). During focal adhesion and cell migration process, SLK is activated and colocalized to the focal adhesion complex where it promotes complex turnover by phosphorylating paxillin at Ser250 (14, 15).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: SH2 domain-containing leukocyte protein of 76 kDa (SLP-76) is a hematopoietic adaptor protein that is important in multiple biochemical signaling pathways and necessary for T cell development and activation (1). ZAP-70 phosphorylates SLP-76 and LAT as a result of TCR ligation. SLP-76 has amino-terminal tyrosine residues followed by a proline rich domain and a carboxy-terminal SH2 domain. Phosphorylation of Tyr113 and Tyr128 result in recruitment of the GEF Vav and the adapter protein Nck (2). TCR ligation also leads to phosphorylation of Tyr145, which mediates an association between SLP-76 and Itk, which is accomplished in part via the proline rich domain of SLP-76 and the SH3 domain of ITK (3). Furthermore, the proline rich domain of SLP-76 binds to the SH3 domains of Grb2-like adapter Gads (3,4). In resting cells, SLP-76 is predominantly in the cytosol. Upon TCR ligation, SLP-76 translocates to the plasma membrane and promotes the assembly of a multi-protein signaling complex that includes Vav, Nck, Itk and PLCγ1 (1). The expression of SLP-76 is tightly regulated; the protein is detected at very early stages of thymocyte development, increases as thymocyte maturation progresses, and is reduced as cells mature to CD4+ CD8+ double-positive thymocytes (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: Bone morphogenetic proteins (BMPs) constitute a large family of signaling molecules that regulate a wide range of critical processes including morphogenesis, cell-fate determination, proliferation, differentiation, and apoptosis (1,2). BMP receptors are members of the TGF-β family of Ser/Thr kinase receptors. Ligand binding induces multimerization, autophosphorylation, and activation of these receptors (3-5). They subsequently phosphorylate Smad1 at Ser463 and Ser465 in the carboxy-terminal motif SSXS, as well as Smad5 and Smad9 (Smad8) at their corresponding sites. These phosphorylated Smads dimerize with the coactivating Smad4 and translocate to the nucleus, where they stimulate transcription of target genes (5).MAP kinases and CDKs 8 and 9 phosphorylate residues in the linker region of Smad1, including Ser206. The phosphorylation of Ser206 recruits Smurf1 to the linker region and leads to the degradation of Smad1 (6). Phosphorylation of this site also promotes Smad1 transcriptional action by recruiting YAP to the linker region (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Western Blotting

Background: Bone morphogenetic proteins (BMPs) constitute a large family of signaling molecules that regulate a wide range of critical processes including morphogenesis, cell-fate determination, proliferation, differentiation, and apoptosis (1,2). BMP receptors are members of the TGF-β family of Ser/Thr kinase receptors. Ligand binding induces multimerization, autophosphorylation, and activation of these receptors (3-5). They subsequently phosphorylate Smad1 at Ser463 and Ser465 in the carboxy-terminal motif SSXS, as well as Smad5 and Smad9 (Smad8) at their corresponding sites. These phosphorylated Smads dimerize with the coactivating Smad4 and translocate to the nucleus, where they stimulate transcription of target genes (5).MAP kinases and CDKs 8 and 9 phosphorylate residues in the linker region of Smad1, including Ser206. The phosphorylation of Ser206 recruits Smurf1 to the linker region and leads to the degradation of Smad1 (6). Phosphorylation of this site also promotes Smad1 transcriptional action by recruiting YAP to the linker region (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: SMARCA1 (SNF2L) is one of the two orthologs of the ISWI (imitation switch) ATPases encoded by the mammalian genome (1). The ISWI chromatin remodeling complexes were first identified in Drosophila and have been shown to remodel and alter nucleosome spacing in vitro (2). SMARCA1 is the catalytic subunit of the nucleosome remodeling factor (NURF) and CECR2-containing remodeling factor (CERF) complexes (3-5). The NURF complex plays an important role in neuronal physiology by promoting neurite outgrowth and regulation of Engrailed homeotic genes that are involved in neuronal development in the mid-hindbrain (3). NURF is also thought to be involved in the maturation of T cells from thymocytes by regulating chromatin structure and expression of genes important for T cell development (6). The largest subunit of the NURF complex, BPTF, is required for proper development of mesoderm, endoderm, and ectoderm tissue lineages, suggesting a role for SMARCA1 in the development of the germ layers in mouse embryo (7). Disruption of the CERF complex by deletion of CECR2, an interacting partner of SMARCA1, is associated with the neural tube defect exencephaly, linking the CERF complex with regulation of neurulation (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: SMARCAD1 is a SWI/SNF-like chromatin remodeling protein that plays a critical role in the maintenance of heterochromatin domains following DNA replication and proper chromosome segregation during mitosis (1-3). SMARCAD1 can be found in association with transcription repressor KAP1, histone deacetylases HDAC1/2, and lysine methyltransferase G9a/GLP, which are recruited to sites of DNA replication by PCNA. These proteins facilitate deacetylation of histones and methylation of histone H3 Lys9 to re-establish heterochromatin domains, such as centromeric regions (1). SMARCAD1 also plays a role in double stranded DNA break repair by facilitating DNA end resection and the subsequent repair by homologous recombination (4). Loss of SMARCAD1 results in increased sensitivity to DNA damaging agents, suggesting a role in the maintenance of genome stability.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: ATP-dependent chromatin remodeling complexes play an essential role in the regulation of nuclear processes such as transcription and DNA replication and repair (1,2). The SWI/SNF chromatin remodeling complex consists of more than 10 subunits and contains a single molecule of either BRM or BRG1 as the ATPase catalytic subunit. The activity of the ATPase subunit disrupts histone-DNA contacts and changes the accessibility of crucial regulatory elements to the chromatin. The additional core and accessory subunits play a scaffolding role to maintain stability and provide surfaces for interaction with various transcription factors and chromatin (2-5). The interactions between SWI/SNF subunits and transcription factors, such as nuclear receptors, p53, Rb, BRCA1, and MyoD, facilitate recruitment of the complex to target genes for regulation of gene activation, cell growth, cell cycle, and differentiation processes (1,6-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Structural maintenance of chromosomes 1 (SMC1) protein is a chromosomal protein member of the cohesin complex that enables sister chromatid cohesion and plays a role in DNA repair (1,2). ATM/NBS1-dependent phosphorylation of SMC1 occurs at Ser957 and Ser966 in response to ionizing radiation (IR) as part of the intra-S-phase DNA damage checkpoint (3). SMC1 phosphorylation is ATM-independent in cells subjected to other forms of DNA damage, including UV light and hydroxyurea treatment (4). While phosphorylation of SMC1 is required for activation of the IR-induced intra-S-phase checkpoint, the precise mechanism is not well understood and may involve a conformational change that affects SMC1-SMC3 interaction (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: SMG-1 is a member of the phosphoinositide 3-kinase-related kinase (PIKK) family, which includes ATM, ATR, mTOR, DNA-PKcs, and TRRAP (1,2). Activated by DNA damage, SMG-1 has been shown to phosphorylate p53 and hUpf1 (SMG-2) (1-4). hUpf1 is a subunit of the surveillance complex that allows degradation of messenger RNA species containing premature termination codons (PTCs). This process, known as nonsense-mediated mRNA decay (NMD), prevents the translation of truncated forms of proteins that may result in gain of function or dominant negative species. NMD occurs under normal cellular conditions as well as in response to damage (5,6). SMG-1 has also been shown to affect cell death receptor signaling and to protect cells from extrinsically induced apoptotic cell death (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: SMG-1 is a member of the phosphoinositide 3-kinase-related kinase (PIKK) family, which includes ATM, ATR, mTOR, DNA-PKcs, and TRRAP (1,2). Activated by DNA damage, SMG-1 has been shown to phosphorylate p53 and hUpf1 (SMG-2) (1-4). hUpf1 is a subunit of the surveillance complex that allows degradation of messenger RNA species containing premature termination codons (PTCs). This process, known as nonsense-mediated mRNA decay (NMD), prevents the translation of truncated forms of proteins that may result in gain of function or dominant negative species. NMD occurs under normal cellular conditions as well as in response to damage (5,6). SMG-1 has also been shown to affect cell death receptor signaling and to protect cells from extrinsically induced apoptotic cell death (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Bone morphogenetic proteins (BMPs) constitute a large family of signaling molecules that regulate a wide range of critical processes including morphogenesis, cell-fate determination, proliferation, differentiation, and apoptosis (1,2). BMP receptors are members of the TGF-β family of Ser/Thr kinase receptors. Ligand binding induces multimerization, autophosphorylation, and activation of these receptors (3-5). They subsequently phosphorylate Smad1 at Ser463 and Ser465 in the carboxy-terminal motif SSXS, as well as Smad5 and Smad9 (Smad8) at their corresponding sites. These phosphorylated Smads dimerize with the coactivating Smad4 and translocate to the nucleus, where they stimulate transcription of target genes (5).MAP kinases and CDKs 8 and 9 phosphorylate residues in the linker region of Smad1, including Ser206. The phosphorylation of Ser206 recruits Smurf1 to the linker region and leads to the degradation of Smad1 (6). Phosphorylation of this site also promotes Smad1 transcriptional action by recruiting YAP to the linker region (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: SET and MYND domain-containing protein 2 (SMYD2), also known as lysine methyltransferase protein 3C (KMT3C), is a member of the SMYD family of protein methyltransferases (1). All five members of this family (SMYD1, SMYD2, SMYD3, SMYD4, and SMYD5) contain a conserved catalytic SET domain, originally identified in Drosophila Su[var]3-9, Enhancer of zeste, and Trithorax proteins. This domain is split by the MYN domain/zinc finger motif believed to facilitate protein-protein interactions (1). SMYD2 localizes to both the cytoplasm and nucleus, and is highly expressed in the adult mouse heart, brain, liver, kidney, thymus, and ovary, as well as in the developing mouse embryo (1). SMYD2 functions to repress transcription by interacting with the Sin3A repressor complex and methylating Lys36 of histone H3 (1). SMYD2 also interacts with HSP90α and methylates Lys4 of histone H3, a mark associated with transcriptional activation (2). In addition to histones as methyl substrates, SMYD2 methylates p53 at Lys370 to repress p53-mediated transcriptional activation and apoptosis (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: The 25 kDa synaptosome-associated protein (SNAP25) is a target membrane soluble, N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) that is found on neuronal presynaptic membranes. SNAP25 forms a core complex with the SNARE proteins syntaxin and synaptobrevin to mediate synaptic vesicle fusion with the plasma membrane during Ca2+-dependent exocytosis (1). This complex is responsible for exocytosis of the neurotransmitter γ-aminobutyric acid (GABA). Neurotransmitter release is inhibited by proteolysis of SNAP25 by botulinum toxins A and E (2). SNAP25 plays a secondary role as a Q-SNARE involved in endosome fusion; the protein is associated with genetic susceptibility to attention-deficit hyperactivity disorder (ADHD) (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: The 25 kDa synaptosome-associated protein (SNAP25) is a target membrane soluble, N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) that is found on neuronal presynaptic membranes. SNAP25 forms a core complex with the SNARE proteins syntaxin and synaptobrevin to mediate synaptic vesicle fusion with the plasma membrane during Ca2+-dependent exocytosis (1). This complex is responsible for exocytosis of the neurotransmitter γ-aminobutyric acid (GABA). Neurotransmitter release is inhibited by proteolysis of SNAP25 by botulinum toxins A and E (2). SNAP25 plays a secondary role as a Q-SNARE involved in endosome fusion; the protein is associated with genetic susceptibility to attention-deficit hyperactivity disorder (ADHD) (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: SNARK was identified as an SNF1/AMPK-related kinase and member of the AMPK catalytic subunit family (1,2). This enzyme was separately identified as a TNFα-induced SNF1-like kinase 2 (NUAK2) (3). The kinase activity of SNARK/NUAK2 is increased by AMP and AICAR (1). SNARK/NUAK2 activity is regulated by a variety of cellular stresses such as endoplasmic reticulum (ER) stress and oxidative stresses (4), suggesting that SNARK/NUAK2 is a signaling molecule involved in the cell stress response (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: SNIP (SNAP25-interacting protein)/p140Cap (p130Cas-associated protein) is a cytoskeleton-associated protein identified initially in rat as a protein interacting with the brain-specific synaptosome protein SNAP25 (1) and subsequently as interacting with the broadly expressed scaffold protein p130Cas (2). SNAP25, a presynaptic protein implicated in neurotransmitter secretion, membrane fusion and neurite outgrowth, is part of the SNARE complex that includes syntaxin and synaptobrevin/VAMP (3). SNIP-SNAP25 association is mediated by coiled-coil interactions (1). Overexpression of SNIP inhibits calcium-dependent exocytosis in PC12 cells (1). Human and mouse orthologs of SNIP, termed p140Cap, were subsequently identified through association with p130Cas, a substrate of v-Src and v-Crk that is tyrosine-phosphorylated in response to cell adhesion and mitogenic stimuli (2,4,5). Expression of p140Cap was observed in brain, testis and epithelial-rich tissues and may exist in various alternatively spliced, tissue-specific isoforms (2). p140Cap is also tyrosine-phosphoryalated in response to adhesion molecules and EGF treatment (2). Together these studies suggest a role for SNIP/p140Cap in controlling cell spreading, migration and neurosecretion.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Transforming growth factor-β (TGF-β) superfamily members are critical regulators of cell proliferation and differentiation, developmental patterning and morphogenesis and disease pathogenesis (1-3). Upon stimulation by TGF-β, activated receptors phosphorylate Smad2 and Smad3, resulting in their translocation to the nucleus, association with Smad4 and transcriptional regulation of target genes (4). Ski and SnoN are related oncoproteins originally discovered based on homology to v-Ski, the transforming protein of the Sloan-Kettering virus (5). They regulate TGF-β signaling by binding to Smad2 and Smad4 and repressing their ability to activate transcription (6). Following TGF-β stimulation, SnoN is rapidly degraded by the ubiquitin proteasome pathway providing negative feedback regulation (6-9). Overexpression of SnoN and Ski can transform avian fibroblasts and induce muscle differentiation (10). Mice heterozygous for SnoN and Ski display increased susceptibility to tumorigenesis (11,12). Interestingly, elevated expression of Ski and SnoN has been observed in many tumors and may serve as important prognostic markers (13,14). Taken together, these studies suggest possible dual functions of these proteins at different stages of tumorigenesis (15).