Microsize antibodies for $99 | Learn More >>

Product listing: Tri-Methyl-Histone H3 (Lys4) Antibody, UniProt ID P68431 #9727 to UBE1a Antibody, UniProt ID P22314 #4890

$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The E3 ubiquitin-protein ligase ARIH2 (TRIAD1) is an Ariadne subfamily ligase involved in the polyubiquitination of proteins designated for proteasomal degradation. The TRIAD1 nuclear protein contains an amino-terminal acidic region, a pair of RING fingers, two carboxyl-terminal coiled coil domains and a novel C6HC DRIL/IBR domain located between the RING fingers. Together, the paired RING fingers and DRIL/IBR domain form a highly conserved TRIAD (two RING fingers and DRIL) domain (1). Research studies suggest that TRIAD1 mediates both Lys48 and Lys63 protein polyubiquitination and acts as a negative regulator of myelopoiesis. TRIAD1 ubiquitin ligase inhibits myeloid cell proliferation by mediating protein ubiquitination through the ubiquitin-conjugating enzymes UbcH7 and UbcH13 (2,3). Experimental deletion of TRIAD1 in mice has a lethal effect, leading to death at the embryonic stage or later due to a severe, multi-organ inflammatory response. Results indicate that TRIAD1 binds IκBβ in dendritic cells and promotes the degradation of the NF-κB inhibitor (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Members of the Toll-like receptor (TLR) family, named for the closely related Toll receptor in Drosophila, play a pivotal role in innate immune responses (1-4). TLRs recognize conserved motifs found in various pathogens and mediate defense responses (5-7). Triggering of the TLR pathway leads to the activation of NF-κB and subsequent regulation of immune and inflammatory genes (4). The TLRs and members of the IL-1 receptor family share a conserved stretch of approximately 200 amino acids known as the Toll/Interleukin-1 receptor (TIR) domain (1). Upon activation, TLRs associate with a number of cytoplasmic adaptor proteins containing TIR domains, including myeloid differentiation factor 88 (MyD88), MyD88-adaptor-like/TIR-associated protein (MAL/TIRAP), Toll-receptor-associated activator of interferon (TRIF), and Toll-receptor-associated molecule (TRAM) (8-10). This association leads to the recruitment and activation of IRAK1 and IRAK4, which form a complex with TRAF6 to activate TAK1 and IKK (8,11-14). Activation of IKK leads to the degradation of IκB, which normally maintains NF-κB in an inactive state by sequestering it in the cytoplasm.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Tripartite motif-containing protein 29 (TRIM29, ATDC) was isolated as a candidate gene by its ability to complement the radiosensitivity defect of an ataxia-telangiectasia (AT) cell line (1). This putative transcription regulator belongs to the TRIM (tripartite motif) protein family that is characterized by highly conserved amino-terminal RING finger, B-box, and coiled-coil domains. The TRIM29 protein binds and sequesters cytosolic p53, repressing expression of p53 target genes including p21 and Noxa by preventing p53 from entering the nucleus. Expression of TRIM29 inhibits p53 function and results in increased cell proliferation. (2). TRIM29 enhances tumor growth and metastasis in vivo and high TRIM29 levels are seen in most invasive pancreatic cancers. The oncogenic effect of TRIM29 appears to require β-catenin as expression of both proteins is elevated in pancreatic cancer cell lines and tissues (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The family of Trk receptor tyrosine kinases consists of TrkA, TrkB, and TrkC. While the sequence of these family members is highly conserved, they are activated by different neurotrophins: TrkA by NGF, TrkB by BDNF or NT4, and TrkC by NT3 (1). Neurotrophin signaling through these receptors regulates a number of physiological processes, such as cell survival, proliferation, neural development, and axon and dendrite growth and patterning (1). In the adult nervous system, the Trk receptors regulate synaptic strength and plasticity. TrkA regulates proliferation and is important for development and maturation of the nervous system (2). Phosphorylation at Tyr490 is required for Shc association and activation of the Ras-MAP kinase cascade (3,4). Residues Tyr674/675 lie within the catalytic domain, and phosphorylation at these sites reflects TrkA kinase activity (3-6). Point mutations, deletions, and chromosomal rearrangements (chimeras) cause ligand-independent receptor dimerization and activation of TrkA (7-10). TrkA is activated in many malignancies including breast, ovarian, prostate, and thyroid carcinomas (8-13). Research studies suggest that expression of TrkA in neuroblastomas may be a good prognostic marker as TrkA signals growth arrest and differentiation of cells originating from the neural crest (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The family of Trk receptor tyrosine kinases consists of TrkA, TrkB, and TrkC. While the sequence of these family members is highly conserved, they are activated by different neurotrophins: TrkA by NGF, TrkB by BDNF or NT4, and TrkC by NT3 (1). Neurotrophin signaling through these receptors regulates a number of physiological processes, such as cell survival, proliferation, neural development, and axon and dendrite growth and patterning (1). In the adult nervous system, the Trk receptors regulate synaptic strength and plasticity. TrkA regulates proliferation and is important for development and maturation of the nervous system (2). Phosphorylation at Tyr490 is required for Shc association and activation of the Ras-MAP kinase cascade (3,4). Residues Tyr674/675 lie within the catalytic domain, and phosphorylation at these sites reflects TrkA kinase activity (3-6). Point mutations, deletions, and chromosomal rearrangements (chimeras) cause ligand-independent receptor dimerization and activation of TrkA (7-10). TrkA is activated in many malignancies including breast, ovarian, prostate, and thyroid carcinomas (8-13). Research studies suggest that expression of TrkA in neuroblastomas may be a good prognostic marker as TrkA signals growth arrest and differentiation of cells originating from the neural crest (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Troponin, working in conjunction with tropomyosin, functions as a molecular switch that regulates muscle contraction in response to changes in the intracellular Ca2+ concentration. Troponin consists of three subunits: the Ca2+-binding subunit troponin C (TnC), the tropomyosin-binding subunit troponin T (TnT), and the inhibitory subunit troponin I (TnI) (1). In response to β-adrenergic stimulation of the heart, Ser23 and Ser24 of TnI (cardiac) are phosphorylated by PKA and PKC. This phosphorylation stimulates a conformational change of the regulatory domain of TnC, reduces the association between TnI and TnC, and decreases myofilament Ca2+ sensitivity by reducing the Ca2+ binding affinity of TnC (1-3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Western Blotting

Background: Troponin, working in conjunction with tropomyosin, functions as a molecular switch that regulates muscle contraction in response to changes in the intracellular Ca2+ concentration. Troponin consists of three subunits: the Ca2+-binding subunit troponin C (TnC), the tropomyosin-binding subunit troponin T (TnT), and the inhibitory subunit troponin I (TnI) (1). In response to β-adrenergic stimulation of the heart, Ser23 and Ser24 of TnI (cardiac) are phosphorylated by PKA and PKC. This phosphorylation stimulates a conformational change of the regulatory domain of TnC, reduces the association between TnI and TnC, and decreases myofilament Ca2+ sensitivity by reducing the Ca2+ binding affinity of TnC (1-3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The transient receptor potential cation channel subfamily V member 3 (TRPV3 or VRL3) is a widely expressed ligand-gated ion channel protein that acts in temperature detection between 22º C and 40º C (1). Related transient receptor proteins (TRP) respond to different temperature ranges; TRPA1 responds to cold temperatures and TRPM1 to cool, while warmer temperatures elicit response from TRPV3 and TRPV4. Noxious heat or painful temperatures correlate with TRPM8 and TRPV1 activity (reviewed in 2). TRPV3 is found in association with TRPV1 (VR1) and is thought to modulate activity of this noxious heat-responsive protein (3). Increased TRPV1 and TRPV3 protein expression is correlated with nervous injury, while reduced expression of both may be see in cases of diabetic skin neuropathy (2). Recent evidence implicates TRPV3 in pruritic dermatitis, or itching associated with eczema and related skin disorders (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: TRPV4 is a member of the transient receptor potential vanilloid (TRPV) family of ion channels, and functions as a Ca2+-permeant non-selective cation channel. TRPV4 channels are expressed in many cell types, with particular abundance in sensory and spinal neurons (1). TRPV4 channels play a role in maintaining cellular homeostasis, by facilitating transmembrane Ca2+ transport in response to various stimuli, including thermal stress, fatty acid metabolites, and hypotonicity (2). Mutations in the TRPV4 gene have consequently been attributed to a variety of pathological conditions. For example, constitutively active TRPV4 mutants can lead to excess Ca2+ influx, resulting in toxicity and degeneration of peripheral nerves (3). TRPV4-dependent Ca2+ influx was also shown to mediate strain-induced and TGFβ1-induced epithelial-mesenchymal transition (EMT), suggesting a mechanistic role for TRPV4-mediated Ca2+ transport in fibrosis and oncogenesis (4). Consistent with this, studies in capillary endothelial cells showed that mechanical strain-induced Ca2+ influx through TRPV4 promote focal adhesion and stress fiber remodeling, mediated specifically through integrins, PI3K, and downstream kinases including Rho and ROCK (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Transformation/transcription domain-associated protein (TRRAP) is a highly conserved 434 kDa protein found in various multiprotein complexes, such as SAGA, PCAF, NuA4 and TIP60, which contain histone acetyltransferase (HAT) activity (1-4). TRRAP functions as an adaptor protein by binding directly to the transactivation domains of transcriptional activator proteins and facilitating the recruitment of HAT complexes to acetylate histone proteins and activate transcription (1-5). TRRAP is required for the transcriptional activation and cell transformation activities of c-Myc, E2F1, E2F4, p53 and the adenovirus E1A proteins (1,6,7). TRRAP is also essential in early development and is required at the mitotic checkpoint and for normal cell cycle progression (8,9). In addition, TRRAP has been shown to function in DNA repair. As part of the TIP60 complex, TRRAP is required for the acetylation of histone H4 at double-stranded DNA breaks and subsequent DNA repair by homologous recombination (10). In addition, TRRAP associates with the MRN (MRE11, RAD50, NBS1) complex, which lacks intrinsic HAT activity yet functions in the sensing and subsequent repair of double-stranded breaks by non-homologous DNA end-joining (11). TRRAP shows significant homology to the PI-3 kinase domain of the ATM family of kinases; however, amino acids that map to the catalytic site of the kinase domain are not conserved in TRRAP (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Transformation/transcription domain-associated protein (TRRAP) is a highly conserved 434 kDa protein found in various multiprotein complexes, such as SAGA, PCAF, NuA4 and TIP60, which contain histone acetyltransferase (HAT) activity (1-4). TRRAP functions as an adaptor protein by binding directly to the transactivation domains of transcriptional activator proteins and facilitating the recruitment of HAT complexes to acetylate histone proteins and activate transcription (1-5). TRRAP is required for the transcriptional activation and cell transformation activities of c-Myc, E2F1, E2F4, p53 and the adenovirus E1A proteins (1,6,7). TRRAP is also essential in early development and is required at the mitotic checkpoint and for normal cell cycle progression (8,9). In addition, TRRAP has been shown to function in DNA repair. As part of the TIP60 complex, TRRAP is required for the acetylation of histone H4 at double-stranded DNA breaks and subsequent DNA repair by homologous recombination (10). In addition, TRRAP associates with the MRN (MRE11, RAD50, NBS1) complex, which lacks intrinsic HAT activity yet functions in the sensing and subsequent repair of double-stranded breaks by non-homologous DNA end-joining (11). TRRAP shows significant homology to the PI-3 kinase domain of the ATM family of kinases; however, amino acids that map to the catalytic site of the kinase domain are not conserved in TRRAP (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: TRXR1 (thioredoxin reductase 1) is a selenocysteine-containing protein that is involved in redox homeostasis (1-6). Its canonical target is thioredoxin, another redox protein (1). Together, they are involved in many functions such as antioxidant regulation (3-6), cell proliferation (2,3,5), DNA replication (2,3), and transcription (3,5). TRXR1 is also capable of reducing a wide array of cellular proteins (1,3). Selenium deficiency, either by diet modification (2,6) or introduction of methylmercury (4), hinders proper expression and function of TRXR1. It is possible that this effect, which results in a higher oxidative state, is a result of the selenocysteine codon (UGA) being read as a STOP codon in the absence of adequate selenium (4). The functions of TRXR1 in cell proliferation and antioxidant defense make it a potential therapeutic target.

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: TTK (Mps1, PYT) is a cell cycle regulated dual specificity kinase present in rapidly proliferating tissues and cell lines (1-3). TTK localizes to kinetochores and centromeres and is an essential component of the mitotic spindle checkpoint as well as centrosome duplication (4-6). The mitotic checkpoint inhibits entry into anaphase until all chromosomes are attached to the spindle; inhibition of this process leads to genomic instability and tumorigenesis. Phosphorylation of the BLM helicase at Ser144 by TTK maintains chromosome stability during mitosis (7). Small molecule inhibitors of TTK can block the spindle checkpoint response, thereby making TTK a potential therapeutic target (8,9).TTK also participates in the DNA damage response by directly phosphorylating and activating the cell cycle checkpoint kinase Chk2 at Thr68. Two targets phosphorylated by Chk2 are the cell cycle phosphatase cdc25 and the transcription factor p53. Inactivation of cdc25 phosphatase results in the accumulation of inactive cyclin B and cell cycle arrest following DNA damage. Phosphorylation of p53 by active Chk2 stabilizes the transcription factor and promotes cell cycle arrest and apoptosis in response to DNA damage (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Tuberin is a product of the TSC2 tumor suppressor gene and an important regulator of cell proliferation and tumor development (1). Mutations in either TSC2 or the related TSC1 (hamartin) gene cause tuberous sclerosis complex (TSC), an autosomal dominant disorder characterized by development of multiple, widespread non-malignant tumors (2). Tuberin is directly phosphorylated at Thr1462 by Akt/PKB (3). Phosphorylation at Thr1462 and Tyr1571 regulates tuberin-hamartin complexes and tuberin activity (3-5). In addition, tuberin inhibits the mammalian target of rapamycin (mTOR), which promotes inhibition of p70 S6 kinase, activation of eukaryotic initiation factor 4E binding protein 1 (4E-BP1, an inhibitor of translation initiation), and eventual inhibition of translation (3,6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Tug (Tether containing UBX domain for GLUT4), also known as ASPL, ASPSCR1, RCC17, UBXD9, UBXN9, was first identified as a chromosomal translocation partner for TFE3 in patients with Alveolar soft part sarcoma (1) and contains an UBX-like domain in its C-terminal region. Tug is found to tether GLUT4 in intracellular vesicles and to release GLUT4 for cell surface translocation upon insulin stimulation (2). Stable Tug depletion or expression of a dominant negative form stimulates GLUT4 redistribution (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: TWEAK (TNFSF12/Apo-3L) is a member of the TNF superfamily of cytokines that are typically involved in immune regulation, inflammation, and apoptosis (1,2). TWEAK mRNA is expressed in a variety of tissues and cell lines, with higher levels observed in the heart, brain, skeletal muscle and within the immune system (1). Like other family members TWEAK is a type II transmembrane protein that can also be proteolytically processed to form a soluble cytokine. Soluble TWEAK is a weak inducer of apoptosis in some cell lines (1). The receptor for TWEAK, known as TWEAKR or fibroblast growth factor inducible 14 (Fn14), is a relatively small member of the TNF receptor family (3). TWEAK signaling has been associated with apoptosis, proliferation, migration, angiogenesis, and inflammation (4). Recent studies have suggested some therapeutic potential of TWEAK and its receptor signaling in regards to autoimmunity, cancer, and vascular injury (5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The receptor for TWEAK, fibroblast growth factor-inducible 14 (Fn14), is a member of the TNF superfamily of receptors thought to be involved in cell growth, adhesion and migration (1). Its expression is regulated by a number of different growth factors (1,2). Elevated expression is also seen in some cancers including hepatocellular carcinomas (3), glioblastomas (4), and pancreatic cancer (5). The receptor contains a binding site for members of the TNFR-associated factor (TRAF) family that promotes the activation of NF-κB (1,6). Recent studies have suggeted some therapeutic potential of TWEAK and its receptor signaling in regards to autoimmunity and cancer treatment (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Twinfilin is an actin monomer-binding protein found in all eukaryotes (1). Mammals have three isoforms. Twinfilin-1 and twinfilin-2a are expressed in most non-muscle cell types, whereas twinfilin-2b is the main isoform in adult heart and skeletal muscle (2). Twinfilins are composed of two ADF-homology domains connected by a 30 kDa linker region. All twinfilins have been shown to form a 1:1 complex with G-actin, but not F-actin (reviewed in 3). Twinfilin-1 was originally known as A6 protein tyrosine kinase and thought to be part of a novel class of protein kinases. However, the protein was renamed after further studies showed no evidence of tyrosine kinase activity (4). Twinfilin-1 helps to prevent the actin filament assembly by forming a complex with actin monomers and, in mammals, has been shown to cap the filament barbed ends. It has been suggested that this regulates cell motility (5). Suppression of twinfilin-1 has also been shown to slow lymphoma cell migration to lymph nodes (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: TWIST1 is a basic helix-loop-helix (b-HLH) transcription factor that functions as a master regulator of embryonic morphogenesis and plays essential roles in mesenchymal differentiation and osteogenic determination (1-3). Mutations affecting the b-HLH domain of the TWIST1 gene have been associated with Saethre-Chotzen syndrome, an autosomal dominant craniosynostosis disorder causing craniofacial and limb abnormalities (4,5). TWIST1 is upregulated in various human tumors and may play a role in EMT (epithelial-mesenchymal transition) and metastasis (6,7). Upregulation of TWIST1 may contribute to resistance to Taxol and microtubule regulating drugs in tumors (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Tyk2 is a member of the Jak family of protein tyrosine kinases. It associates with and is activated by receptors for many cytokines including IL-13, the IL-6 family, IL-10, and IFN-α and β (1-3). Following ligand binding, Tyk2 is activated by phosphorylation of Tyr1054 and/or Tyr1055 (4). Tyk2 is required for the tyrosine phosphorylation of Stat3 in the IFN-β signaling cascade (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of the neurotransmitter dopamine and other catecholamines. TH functions as a tetramer, with each subunit composed of a regulatory and catalytic domain, and exists in several different isoforms (1,2). This enzyme is required for embryonic development since TH knockout mice die before or at birth (3). Levels of transcription, translation and posttranslational modification regulate TH activity. The amino-terminal regulatory domain contains three serine residues: Ser9, Ser31 and Ser40. Phosphorylation at Ser40 by PKA positively regulates the catalytic activity of TH (4-6). Phosphorylation at Ser31 by CDK5 also increases the catalytic activity of TH through stabilization of TH protein levels (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: The UAP56 gene is found in the central MHC region and encodes a member of the DEAD-box family of RNA helicases (1). Also known as DDX39B and BAT1, UAP56 functions as an ATP-dependent splicing factor and RNA helicase in the evolutionary conserved transcription/export (TREX) complex. The TREX complex is recruited to sites of active transcription, where it travels along the length of the gene with RNA polymerase II and exports resulting mRNAs to the cytoplasm (2-8). Both UAP56 and its paralog DDX39A are hijacked by various viral replication machineries to enable viral reproduction and mRNA export (9-11). UAP56 and DDX39A have also been implicated in promoting the AR-V7 splice variant in advanced prostate cancers (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The process of SUMO conjugation to target proteins is similar to the molecular chain of events observed with ubiquitin (1). SUMO is conjugated to target proteins through the coordinated action of the cellular SUMO conjugation machinery consisting of E1, E2, and E3 enzymes (2). The canonical SUMO E1 activating enzyme is a heterodimer consisting of SAE1 (AOS1) and UBA2 (SAE2) subunits. Mature SUMO is activated by E1 in an ATP-dependent reaction that generates adenylated SUMO, which functions as a high-energy intermediate in the formation of a thioester linkage between SUMO and Cys173 of UBA2 (3,4). SUMO is subsequently transferred from UBA2 to the SUMO E2 conjugating enzyme, UBC9 (5). Recent evidence suggests that redox regulation of UBA2 serves as a physiologic mechanism to modulate the cellular level of sumoylated target proteins (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Similar to ubiquitin, NEDD8 is covalently linked to target proteins through an enzymatic cascade composed of NEDD8-specific E1 (activating)- and E2 (conjugating)-enzymes (1,2). The E2 ligase specific for NEDD8 is Ubc12 (3-5). Ubc12 forms a heterodimeric conjugate with NEDD8 in order to catalyze the transfer of NEDD8 from E1 to lysine side chains of target proteins (1,2). Well known targets of NEDD8 are cullin-based RING E3 ligases. Neddylation of cullin isoforms activates the related ubiquitin E3 complex by promoting its interaction with a cognate ubiquitin-E2 ligase (6-7). Neddylation of Cul-1 complexes containing βTrCP and SKP2 has been shown to be required for controlling the stability of important signaling targets such as IκB, NF-κB, and p27 Kip (8-10), thereby regulating cell cycle progression, signaling cascades, and developmental programming processes (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Protein ubiquitination is an important posttranslational modification that regulates protein function and fate (1). Ubiquitin (Ub) can be conjugated to target proteins in either monomeric or polymeric forms. There are several different lysine residues within Ub that can be used as conjugation sites for poly-Ub chain formation. Different poly-Ub linkages mediate different functions of the target protein ranging from alterations in protein function to degradation (2). UBE2N/Ubc13 is a ubiquitin-E2-conjugating enzyme that catalyzes K63-linked poly-Ub chain formation (1,2). UBE2N forms a heterodimer with MMS2 or Uev1A to exert its E2 ligase function. The UBE2N/MMS2 and UBE2N/Uev1A heterodimers catalyze different modes of target protein ubiquitination to mediate various signaling pathways (3-5) including: DNA damage and recombination, p53 and check point control, the cell cycle (6-10), immunoreceptor signaling (11,12), and endocytosis (13). Most recently, UBE2N was shown to play an important role in inflammatory signaling by promoting K63-linked ubiquitination and activation of IKK downstream of the IL-1β receptor (14). Furthermore, interaction of UBE2N with the Triad1 E3 protein-ubiquitin ligase was shown to play an important role in myelopoiesis (15).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Western Blotting

Background: Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the activation component E1; the activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2, and then from E2 to ubiquitin ligase E3 for final delivery to the epsilon-NH2 of the target protein lysine residue (1-3). Combinatorial interactions of different E2 and E3 proteins result in substrate specificity (4). Recent data suggest that activated E2 associates transiently with E3, and that the dissociation is a critical step for ubiqitination (5). UBC3, the mammalian orthologue of yeast Cdc34, and UBC3B, a UBC3 family member, are E2 ubiquitin-carrier proteins. These proteins contain a conserved core domain containing a cysteine residue, which forms the thioester bond with ubiquitin (6). UBC3 in concert with the SCFSkp2 (Skp1, Cullin and F-box protein/Skp2) complex mediates cell cycle progression from G1 to S phase by targeting the CDK inhibitor p27 for proteolysis (7). UBC3B in concert with the SCFb-Trcp (Skp1, Cullin and F-box protein/b-Trcp) complex mediates degradation of b-catenin (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The process of SUMO-1 conjugation is similar to that seen with ubiquitin and other forms of post-translational protein modification (1). Like ubiquitin, SUMO-1 is conjugated to its target protein by the coordinated action of ubiquitin conjugation enzymes E1, E2 and E3 (2). Ubc9 (or ube2M) is a highly conserved, 158 amino acid protein that acts as a SUMO-1 conjugating enzyme (3). Ubc9 binds to target proteins through their SUMO-1-CS (consensus sequence) domains and interacts with SUMO via the structurally conserved amino-terminal domain (3,4). Localization of Ubc9 to the nucleus and the nuclear envelope allows this enzyme to catalyze target protein sumoylation and regulate target protein nucleocytoplasmic transport and transcriptional activity (5,6). Ubc9 target proteins include a host of proteins (RAD51, RAD52, p53 and c-Jun) that regulate the cell cycle, DNA repair, and p53-dependent processes (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the ubiquitin-activating enzyme (UBE1 or E1). The activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2, and then from E2 to ubiquitin ligase E3 for final delivery to the ε-amino group of the target protein lysine residue (1-3). Combinatorial interactions of different E2 and E3 proteins result in substrate specificity (4). UBE1 has two isofoms: UBE1a is a nuclear protein of 117 kDa while UBE1b is a nuclear and cytoplasmic protein of 110 kDa (5).