20% off purchase of 3 or more products* | Learn More >>

Product listing: Glucocorticoid Receptor (D6H2L) XP® Rabbit mAb (Biotinylated), UniProt ID P04150 #58122 to Granzyme B (E5V2L) Rabbit mAb (Mouse Specific), UniProt ID P04187 #44153

$348
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Glucocorticoid Receptor (D6H2L) XP® Rabbit mAb #12041.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Glucocorticoid hormones control cellular proliferation, inflammation, and metabolism through their association with the glucocorticoid receptor (GR)/NR3C1, a member of the nuclear hormone receptor superfamily of transcription factors (1). GR is composed of several conserved structural elements, including a carboxy-terminal ligand-binding domain (which also contains residues critical for receptor dimerization and hormone-dependent gene transactivation), a neighboring hinge region containing nuclear localization signals, a central zinc-finger-containing DNA-binding domain, and an amino-terminal variable region that participates in ligand-independent gene transcription. In the absence of hormone, a significant population of GR is localized to the cytoplasm in an inactive form via its association with regulatory chaperone proteins, such as HSP90, HSP70, and FKBP52. On hormone binding, GR is released from the chaperone complex and translocates to the nucleus as a dimer to associate with specific DNA sequences termed glucocorticoid response elements (GREs), thereby enhancing or repressing transcription of specific target genes (2). It was demonstrated that GR-mediated transcriptional activation is modulated by phosphorylation (3-5). Although GR can be basally phosphorylated in the absence of hormone, it becomes hyperphosphorylated upon binding receptor agonists. It has been suggested that hormone-dependent phosphorylation of GR may determine target promoter specificity, cofactor interaction, strength and duration of receptor signaling, receptor stability, and receptor subcellular localization (3).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Glucocorticoid hormones control cellular proliferation, inflammation, and metabolism through their association with the glucocorticoid receptor (GR)/NR3C1, a member of the nuclear hormone receptor superfamily of transcription factors (1). GR is composed of several conserved structural elements, including a carboxy-terminal ligand-binding domain (which also contains residues critical for receptor dimerization and hormone-dependent gene transactivation), a neighboring hinge region containing nuclear localization signals, a central zinc-finger-containing DNA-binding domain, and an amino-terminal variable region that participates in ligand-independent gene transcription. In the absence of hormone, a significant population of GR is localized to the cytoplasm in an inactive form via its association with regulatory chaperone proteins, such as HSP90, HSP70, and FKBP52. On hormone binding, GR is released from the chaperone complex and translocates to the nucleus as a dimer to associate with specific DNA sequences termed glucocorticoid response elements (GREs), thereby enhancing or repressing transcription of specific target genes (2). It was demonstrated that GR-mediated transcriptional activation is modulated by phosphorylation (3-5). Although GR can be basally phosphorylated in the absence of hormone, it becomes hyperphosphorylated upon binding receptor agonists. It has been suggested that hormone-dependent phosphorylation of GR may determine target promoter specificity, cofactor interaction, strength and duration of receptor signaling, receptor stability, and receptor subcellular localization (3).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Glucocorticoid Receptor (D8H2) XP® Rabbit mAb #3660.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Glucocorticoid hormones control cellular proliferation, inflammation, and metabolism through their association with the glucocorticoid receptor (GR)/NR3C1, a member of the nuclear hormone receptor superfamily of transcription factors (1). GR is composed of several conserved structural elements, including a carboxy-terminal ligand-binding domain (which also contains residues critical for receptor dimerization and hormone-dependent gene transactivation), a neighboring hinge region containing nuclear localization signals, a central zinc-finger-containing DNA-binding domain, and an amino-terminal variable region that participates in ligand-independent gene transcription. In the absence of hormone, a significant population of GR is localized to the cytoplasm in an inactive form via its association with regulatory chaperone proteins, such as HSP90, HSP70, and FKBP52. On hormone binding, GR is released from the chaperone complex and translocates to the nucleus as a dimer to associate with specific DNA sequences termed glucocorticoid response elements (GREs), thereby enhancing or repressing transcription of specific target genes (2). It was demonstrated that GR-mediated transcriptional activation is modulated by phosphorylation (3-5). Although GR can be basally phosphorylated in the absence of hormone, it becomes hyperphosphorylated upon binding receptor agonists. It has been suggested that hormone-dependent phosphorylation of GR may determine target promoter specificity, cofactor interaction, strength and duration of receptor signaling, receptor stability, and receptor subcellular localization (3).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Glucocorticoid Receptor (D8H2) XP® Rabbit mAb #3660.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: Glucocorticoid hormones control cellular proliferation, inflammation, and metabolism through their association with the glucocorticoid receptor (GR)/NR3C1, a member of the nuclear hormone receptor superfamily of transcription factors (1). GR is composed of several conserved structural elements, including a carboxy-terminal ligand-binding domain (which also contains residues critical for receptor dimerization and hormone-dependent gene transactivation), a neighboring hinge region containing nuclear localization signals, a central zinc-finger-containing DNA-binding domain, and an amino-terminal variable region that participates in ligand-independent gene transcription. In the absence of hormone, a significant population of GR is localized to the cytoplasm in an inactive form via its association with regulatory chaperone proteins, such as HSP90, HSP70, and FKBP52. On hormone binding, GR is released from the chaperone complex and translocates to the nucleus as a dimer to associate with specific DNA sequences termed glucocorticoid response elements (GREs), thereby enhancing or repressing transcription of specific target genes (2). It was demonstrated that GR-mediated transcriptional activation is modulated by phosphorylation (3-5). Although GR can be basally phosphorylated in the absence of hormone, it becomes hyperphosphorylated upon binding receptor agonists. It has been suggested that hormone-dependent phosphorylation of GR may determine target promoter specificity, cofactor interaction, strength and duration of receptor signaling, receptor stability, and receptor subcellular localization (3).

$348
50 assays
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Glucocorticoid Receptor (D8H2) XP® Rabbit mAb #3660.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: Glucocorticoid hormones control cellular proliferation, inflammation, and metabolism through their association with the glucocorticoid receptor (GR)/NR3C1, a member of the nuclear hormone receptor superfamily of transcription factors (1). GR is composed of several conserved structural elements, including a carboxy-terminal ligand-binding domain (which also contains residues critical for receptor dimerization and hormone-dependent gene transactivation), a neighboring hinge region containing nuclear localization signals, a central zinc-finger-containing DNA-binding domain, and an amino-terminal variable region that participates in ligand-independent gene transcription. In the absence of hormone, a significant population of GR is localized to the cytoplasm in an inactive form via its association with regulatory chaperone proteins, such as HSP90, HSP70, and FKBP52. On hormone binding, GR is released from the chaperone complex and translocates to the nucleus as a dimer to associate with specific DNA sequences termed glucocorticoid response elements (GREs), thereby enhancing or repressing transcription of specific target genes (2). It was demonstrated that GR-mediated transcriptional activation is modulated by phosphorylation (3-5). Although GR can be basally phosphorylated in the absence of hormone, it becomes hyperphosphorylated upon binding receptor agonists. It has been suggested that hormone-dependent phosphorylation of GR may determine target promoter specificity, cofactor interaction, strength and duration of receptor signaling, receptor stability, and receptor subcellular localization (3).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Glucocorticoid hormones control cellular proliferation, inflammation, and metabolism through their association with the glucocorticoid receptor (GR)/NR3C1, a member of the nuclear hormone receptor superfamily of transcription factors (1). GR is composed of several conserved structural elements, including a carboxy-terminal ligand-binding domain (which also contains residues critical for receptor dimerization and hormone-dependent gene transactivation), a neighboring hinge region containing nuclear localization signals, a central zinc-finger-containing DNA-binding domain, and an amino-terminal variable region that participates in ligand-independent gene transcription. In the absence of hormone, a significant population of GR is localized to the cytoplasm in an inactive form via its association with regulatory chaperone proteins, such as HSP90, HSP70, and FKBP52. On hormone binding, GR is released from the chaperone complex and translocates to the nucleus as a dimer to associate with specific DNA sequences termed glucocorticoid response elements (GREs), thereby enhancing or repressing transcription of specific target genes (2). It was demonstrated that GR-mediated transcriptional activation is modulated by phosphorylation (3-5). Although GR can be basally phosphorylated in the absence of hormone, it becomes hyperphosphorylated upon binding receptor agonists. It has been suggested that hormone-dependent phosphorylation of GR may determine target promoter specificity, cofactor interaction, strength and duration of receptor signaling, receptor stability, and receptor subcellular localization (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Glutamate-ammonia ligase (GLUL), also known as glutamine synthetase (GS), catalyzes the de novo synthesis of glutamine from glutamate and ammonia. GLUL is ubiquitously expressed with particularly high expression in the muscle, liver, and brain (1). GLUL expression is elevated in various cancers. Its expression is upregulated by oncogenic c-Myc (2). High expression of GLUL in breast cancer patients is associated with larger tumor size and high level of HER2 expression. It is a predictor of poor survival in patients with glioma and liver cancers (3-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin)

Background: Glutamate-ammonia ligase (GLUL), also known as glutamine synthetase (GS), catalyzes the de novo synthesis of glutamine from glutamate and ammonia. GLUL is ubiquitously expressed with particularly high expression in the muscle, liver, and brain (1). GLUL expression is elevated in various cancers. Its expression is upregulated by oncogenic c-Myc (2). High expression of GLUL in breast cancer patients is associated with larger tumor size and high level of HER2 expression. It is a predictor of poor survival in patients with glioma and liver cancers (3-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Glucose transporter 1 (Glut1, SLC2A1) is a widely expressed transport protein that displays a broad range of substrate specificity in transporting a number of different aldose sugars as well as an oxidized form of vitamin C into cells (1,2). Glut1 is responsible for the basal-level uptake of glucose from the blood through facilitated diffusion (2). Research studies show that Glut1 and the transcription factor HIF-1α mediate the regulation of glycolysis by O-GlcNAcylation in cancer cells (3). Additional studies demonstrate that Glut1 is required for CD4 T cell activation and is critical for the expansion and survival of T effector (Teff) cells (4). Mutations in the corresponding SLC2A1 gene cause GLUT1 deficiency syndromes (GLUT1DS1, GLUT1DS2), a pair of neurologic disorders characterized by delayed development, seizures, spasticity, paroxysmal exercise-induced dyskinesia, and acquired microcephaly (5,6). Two other neurologic disorders - dystonia-9 (DYT9) and susceptibility to idiopathic generalized epilepsy 12 (EIG12) - are also caused by mutations in the SLC2A1 gene (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: A group of related glucose transporters (Glut1-5 and 7) mediate the facilitated diffusion of glucose in nonepithelial mammalian tissues. Within insulin-responsive tissues such as muscle and fat, Glut1 contributes to basal glucose uptake while Glut4 is responsible for insulin-stimulated glucose transport (1-3). Glut4 is a 12-transmembrane domain protein that facilitates glucose transport in the direction of the glucose gradient. This transporter localizes to intracellular organelles (endosomes) in unstimulated cells and translocates to the cell surface following insulin stimulation (1,2,4). Translocation of Glut4 is dependent on Akt, which may act by phosphorylating AS160, a RabGAP protein involved in membrane trafficking (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Glutamate dehydrogenase is a mitochondrial enzyme that catalyzes the oxidative deamination of glutamate to α-ketoglutarate through association with the cofactor nicotinamide adenine dinucleotide phosphate (1). Glutamate dehydrogenase is highly expressed in various tissues such as the liver, brain, kidney, heart, pancreas, ovaries, and testis. Two isoforms produced by two distinct genes are found in mammalian tissues. The GLUD1 gene is ubiquitously expressed (2), while the GLUD2 gene is specifically expressed in testicular tissues and astrocytes (3,4). Glutamate dehydrogenase links glutamate to the Krebs cycle, thereby playing a critical role in the regulation of energy homeostasis. Research studies have shown that changes in glutamate dehydrogenase activity in pancreatic β-cells can cause a hyperinsulinism syndrome (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Glycogen is a polysaccharide of glucose and serves as an energy storage in mammalian muscle and liver (1). Glycogen synthase catalyzes the rate-limiting step of glycogen biosynthesis and has two major isoforms in mammals -- muscle isoform (GYS1) and liver isoform (GYS2) respectively (1). Glycogen synthase kinase-3α (GSK-3α) and glycogen synthase kinase-3β (GSK-3β) phosphorylate glycogen synthase at multiple sites in its C-terminus (Ser641, Ser645, Ser649 and Ser653) inhibiting its activity (2, 3). Hypoxia alters glycogen metabolism including temporal changes of GYS1 expression and phosphorylation in cancer cells, suggesting the role of metabolic reprogramming of glycogen metabolism in cancer growth (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The Golgi apparatus functions in the modification, organization, and transport of proteins and membranes targeted to other parts of the cell, such as the plasma membrane, lysosomes, and endosomes. This regulated transport is important for appropriate protein localization, secretion, and signal transduction. Members of the Golgin family of proteins, including GM130, Giantin, p115, and GRASP65, are defined by their presence in the Golgi matrix and by their long coiled coil domains. Golgin function, which is regulated in part by small GTPases of the Rab and Arl families, includes establishing and maintaining Golgi structure and transport (reviewed in 1). The Golgi cisternae are stacked and linked laterally to form a ribbon. GRASP65 and GM130 are required for membrane fusion events that mediate ribbon formation during Golgi assembly. These lateral fusion events allow for uniform distribution of Golgi enzymes (2). GM130 and Giantin interact with the transport factor p115 to facilitate endoplasmic reticulum (ER)-Golgi transport (3). GM130 is also involved in the transport of the Ether-a-go-go-Related (hERG) potassium ion channel. Inappropriate hERG localization may be an underlying cause in Long QT syndrome, a hereditary and potentially fatal cardiac arrhythmia (4). Further, GM130 was implicated in signal transduction regulating invasion, migration, and cell polarization via its interaction with and activation of serine/threonine kinases YSK1 and Mst4 (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The Golgi-associated protein golgin A1 (GOLGA1, golgin-97) was first isolated as a Golgi complex autoantigen associated with the autoimmune disorder Sjogren's syndrome (1). The golgin-97 protein contains a carboxy-terminal GRIP domain and is a commonly used trans-Golgi network (TGN) marker. All four known mammalian GRIP domain-containing proteins (golgin-97, golgin-245, GCC88 and GCC185) are found in the TGN, share extensive alpha-helical structure, and form homodimers (2). While all four golgin proteins localize to the TGN, they exhibit different membrane-binding abilities and are found in distinct TGN regions (3). Golgin-97 and golgin-245 are targeted to the trans-Golgi network through an interaction between their GRIP domains and the Arl1 protein switch II region (4). Overexpression studies and siRNA assays with GRIP domain-containing proteins suggest that these proteins help to maintain trans-Golgi network integrity and function by controlling localization of TGN resident proteins (5). By using a Shiga toxin B fragment (STxB)-based in vitro transport assay and an E-cadherin transport model system, golgin-97 and its effector Arl1-GTP were shown to play a role in trans-Golgi endosomal trafficking (6,7). Research studies also suggest that golgin-97 may play a role in poxvirus morphogenesis and maturation (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The Golgi-associated protein golgin A1 (GOLGA1, golgin-97) was first isolated as a Golgi complex autoantigen associated with the autoimmune disorder Sjogren's syndrome (1). The golgin-97 protein contains a carboxy-terminal GRIP domain and is a commonly used trans-Golgi network (TGN) marker. All four known mammalian GRIP domain-containing proteins (golgin-97, golgin-245, GCC88 and GCC185) are found in the TGN, share extensive alpha-helical structure, and form homodimers (2). While all four golgin proteins localize to the TGN, they exhibit different membrane-binding abilities and are found in distinct TGN regions (3). Golgin-97 and golgin-245 are targeted to the trans-Golgi network through an interaction between their GRIP domains and the Arl1 protein switch II region (4). Overexpression studies and siRNA assays with GRIP domain-containing proteins suggest that these proteins help to maintain trans-Golgi network integrity and function by controlling localization of TGN resident proteins (5). By using a Shiga toxin B fragment (STxB)-based in vitro transport assay and an E-cadherin transport model system, golgin-97 and its effector Arl1-GTP were shown to play a role in trans-Golgi endosomal trafficking (6,7). Research studies also suggest that golgin-97 may play a role in poxvirus morphogenesis and maturation (8,9).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: GOPC (FIG) was originally identified as a Golgi-associated, PDZ domain containing protein. It has two coiled-coil domains (CC1 and CC2) located in the amino-terminal region and a PDZ domain in the carboxy-terminal region (1). The CC2 domain and its adjacent linker region mediate the association of GOPC with the golgi protein golgin-160 and the Q-SNARE protein syntaxin 6 (1,2). The PDZ domain of GOPC interacts with the carboxy terminus of target proteins to mediate target protein vesicular trafficking and surface expression (3-6). Fusion of the corresponding GOPC gene with the ROS tyrosine kinase oncogene has been detected in some glioblastomas. The resulting GOPC-ROS fusion protein is targeted to the golgi apparatus where a constitutively activate ROS tyrosine kinase can mediate tumor formation (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Glutamate oxaloacetate transaminase 1 (GOT1) catalyzes the interconversion of aspartate and oxaloacetate (1). The increased transamination primarily catalyzed by GOT1 leads to elevated levels of 2-hydroxyglutarate, which promotes methylation of the Foxp3 gene locus, inhibits Foxp3 expression and activates T helper 17 (TH17) cell differentiation (2). In addition, GOT1 is critical to the survival of cells with electron transport chain inhibition by generating aspartate, a metabolite determining the proliferation of these cells (3-4). Studies also show that GOT1 plays a key role in the noncanonical glutamine pathway that supports liver tumorigenesis (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Glycoprotein non-metastatic gene B (GPNMB) is a type I transmembrane glycoprotein over expressed in many types of cancer. The GPNMB glycoprotein is involved in many physiological processes, including mediating transport of late melanosomes to keratinocytes (1), regulating osteoblast and osteoclast differentiation and function (2), stimulating dendritic cell maturation, promoting adhesion of dendritic cells to endothelial cells (3), enhancing autophagosome fusion to lysomes in tissue repair, and regulating degradation of cellular debris (4,5).While typical GPNMB expression is seen in tissues including skin, heart, kidney, lung, liver, and skeletal muscle (3,6), research studies show elevated GPNMB expression often contributes to the metastatic phenotype in numerous cancers (reviewed in 7). GPNMB is typically localized to intracellular compartments in normal cells (1,8), but investigators found it primarily on the cell surface of tumor cells (9,10). Differential localization and expression, and the role of GPNMB as a tumor promoter in many cancer types make this protein a viable therapeutic target (11).The GPNMB ectodomain can be cleaved by matrix metalloproteinases and shed from the cell surface (12). Research studies identify the sheddase ADAM10 as one peptidase responsible for cleavage of the GPNMB ectodomain at the surface of breast cancer cells. Shedded GPNMB ectodomains may promote angiogenesis by inducing endothelial cell migration (13).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Glycoprotein non-metastatic gene B (GPNMB) is a type I transmembrane glycoprotein over expressed in many types of cancer. The GPNMB glycoprotein is involved in many physiological processes, including mediating transport of late melanosomes to keratinocytes (1), regulating osteoblast and osteoclast differentiation and function (2), stimulating dendritic cell maturation, promoting adhesion of dendritic cells to endothelial cells (3), enhancing autophagosome fusion to lysomes in tissue repair, and regulating degradation of cellular debris (4,5).While typical GPNMB expression is seen in tissues including skin, heart, kidney, lung, liver, and skeletal muscle (3,6), research studies show elevated GPNMB expression often contributes to the metastatic phenotype in numerous cancers (reviewed in 7). GPNMB is typically localized to intracellular compartments in normal cells (1,8), but investigators found it primarily on the cell surface of tumor cells (9,10). Differential localization and expression, and the role of GPNMB as a tumor promoter in many cancer types make this protein a viable therapeutic target (11).The GPNMB ectodomain can be cleaved by matrix metalloproteinases and shed from the cell surface (12). Research studies identify the sheddase ADAM10 as one peptidase responsible for cleavage of the GPNMB ectodomain at the surface of breast cancer cells. Shedded GPNMB ectodomains may promote angiogenesis by inducing endothelial cell migration (13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: GPR37 is a G protein-coupled receptor (GPCR) that was originally identified as an orphan receptor highly expressed in the brain and testis (1). It shares significant homology with the receptors of endothelin and bombesin peptides (1). Neuropeptide head activator from the invertebrate Hydra was identified as a high-affinity ligand of GPR37 (2), however, to date, no mammalian ortholog of this peptide that could represent an endogenous GPR37 ligand has been identified. Recently, GPR37 was deorphanized as the receptor for the endogenous peptides prosaptide and prosaposin (3). GPR37 is a substrate of the E3 ubiquitin ligase parkin, and is often referred to as “parkin-associated endothelin-like receptor,” or “Pael-R” (4). GPR37 has been implicated in the pathogenesis of Parkinson’s Disease as it aggregates in the substantia nigra of some PD patients (4,5). Interestingly, prosaposin exerts neuroprotective, neurotrophic, and gliotrophic actions (6), and GPR37 was identified as a negative regulator of oligodendrocyte differentiation and myelination (7), suggesting that it could represent a potential target for demyelinating pathologies.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: G protein-coupled receptor 50 (GPR50) is an orphan G protein coupled receptor with high sequence homology to the melatonin receptors MT1 and MT2. While classified as a member of the melatonin receptor family and also known as melatonin-related receptor, GPR50 does not bind melatonin (1). GPR50 forms heterodimers with MT1 and MT2 and acts as a negative regulator of MT1 agonist binding and G protein coupling; inhibition of melatonin receptor activity is dependent on the long, proline-rich carboxy terminal tail of GPR50 (2). On a physiological level, GPR50 is involved in the regulation of adaptive thermoregulation in mammals and deletion of GPR50 in mice produces a profound effect on the response to fasting and facilitates entry into torpor (3). Polymorphisms in the corresponding GPR50 gene are associated with bipolar affective disorder and major depressive disorder in women, indicating that variation in GPR50 may be an important gender-specific risk factor for certain mental disorders (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Glutathione peroxidase 1 (GPX1) is a cytosolic selenoprotein which reduces hydrogen peroxide to water (1). GPX1 is the most abundant and ubiquitous among the five GPX isoforms identified so far (2). It is an important component in the anti-oxidative defense in cells and is associated with a variety of disease conditions, such as colon cancer (3), coronary artery disease (4) and insulin resistance (1).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Granzyme B (D2H2F) Rabbit mAb #17215.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Granzymes are a family of serine proteases expressed by cytotoxic T lymphocytes and natural killer (NK) cells and are key components of immune responses to pathogens and transformed cells (1). Granzymes are synthesized as zymogens and are processed into mature enzymes by cleavage of a leader sequence. They are released by exocytosis in lysosome-like granules containing perforin, a membrane pore-forming protein. Granzyme B has the strongest apoptotic activity of all the granzymes as a result of its caspase-like ability to cleave substrates at aspartic acid residues thereby activating procaspases directly and cleaving downstream caspase substrates (2,3).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Granzyme B (D2H2F) Rabbit mAb #17215.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Granzymes are a family of serine proteases expressed by cytotoxic T lymphocytes and natural killer (NK) cells and are key components of immune responses to pathogens and transformed cells (1). Granzymes are synthesized as zymogens and are processed into mature enzymes by cleavage of a leader sequence. They are released by exocytosis in lysosome-like granules containing perforin, a membrane pore-forming protein. Granzyme B has the strongest apoptotic activity of all the granzymes as a result of its caspase-like ability to cleave substrates at aspartic acid residues thereby activating procaspases directly and cleaving downstream caspase substrates (2,3).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Granzyme B (D2H2F) Rabbit mAb #17215.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Granzymes are a family of serine proteases expressed by cytotoxic T lymphocytes and natural killer (NK) cells and are key components of immune responses to pathogens and transformed cells (1). Granzymes are synthesized as zymogens and are processed into mature enzymes by cleavage of a leader sequence. They are released by exocytosis in lysosome-like granules containing perforin, a membrane pore-forming protein. Granzyme B has the strongest apoptotic activity of all the granzymes as a result of its caspase-like ability to cleave substrates at aspartic acid residues thereby activating procaspases directly and cleaving downstream caspase substrates (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Granzymes are a family of serine proteases expressed by cytotoxic T lymphocytes and natural killer (NK) cells and are key components of immune responses to pathogens and transformed cells (1). Granzymes are synthesized as zymogens and are processed into mature enzymes by cleavage of a leader sequence. They are released by exocytosis in lysosome-like granules containing perforin, a membrane pore-forming protein. Granzyme B has the strongest apoptotic activity of all the granzymes as a result of its caspase-like ability to cleave substrates at aspartic acid residues thereby activating procaspases directly and cleaving downstream caspase substrates (2,3).

$269
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Western Blotting

Background: Granzymes are a family of serine proteases expressed by cytotoxic T lymphocytes and natural killer (NK) cells and are key components of immune responses to pathogens and transformed cells (1). Granzymes are synthesized as zymogens and are processed into mature enzymes by cleavage of a leader sequence. They are released by exocytosis in lysosome-like granules containing perforin, a membrane pore-forming protein. Granzyme B has the strongest apoptotic activity of all the granzymes as a result of its caspase-like ability to cleave substrates at aspartic acid residues thereby activating procaspases directly and cleaving downstream caspase substrates (2,3).

$269
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry, IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Western Blotting

Background: Granzymes are a family of serine proteases expressed by cytotoxic T lymphocytes and natural killer (NK) cells and are key components of immune responses to pathogens and transformed cells (1). Granzymes are synthesized as zymogens and are processed into mature enzymes by cleavage of a leader sequence. They are released by exocytosis in lysosome-like granules containing perforin, a membrane pore-forming protein. Granzyme B has the strongest apoptotic activity of all the granzymes as a result of its caspase-like ability to cleave substrates at aspartic acid residues thereby activating procaspases directly and cleaving downstream caspase substrates (2,3).