Interested in promotions? | Click here >>

Product listing: TCF1/TCF7 (C63D9) Rabbit mAb (Alexa Fluor® 488 Conjugate), UniProt ID P36402 #6444 to WTX (D38E5) Rabbit mAb, UniProt ID Q5JTC6 #5854

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated TCF1/TCF7 (C63D9) Rabbit mAb #2203.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated TCF1/TCF7 (C63D9) Rabbit mAb #2203.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Pacific Blue™ fluorescent dye and tested in-house for direct flow cytometry in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated antibody TCF1/TCF7 (C63D9) Rabbit mAb #2203.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated TCF1/TCF7 (C63D9) Rabbit mAb #2203.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: TCF12/HEB (T cell factor 12/HeLa E-box binding protein) is a member of the E proteins that are type I basic helix-loop-helix domain containing transcription factors that bind directly to the E-box DNA consensus sequence and control numerous developmental processes (1,2). E protein family members include E2A, E2-2, and TCF12/HEB. TCF12/HEB forms homo- or heterodimers with other E proteins to regulate transcription of target genes that play a critical role in the development of T cells, B cells, and plasmacytoid dendritic cells (2-4). The TCF12/HEB gene has two transcriptional start sites leading to the generation of the long form called HEBCan, and the short form, HEBAlt (5). The two isoforms are thought to have distinct functions with HEBCan playing a role throughout T cell development, while HEBAlt functions in the efficient generation of T cell precursors (5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: ZEB family proteins are zinc finger and homeobox domain containing transcription factors. There are two members in mammals, ZEB1 (δ-EF1, TCF8, AREB6) and ZEB2 (SIP1, (ZEB1 and ZEB2 contain two separate Zinc-finger domain and a homeodomain (1). While ZEB proteins mainly function as transcriptional suppressors, they are able to activate transcription, dependent on DNA-context and cell type (1). One of the targets suppressed by ZEB proteins is E-cadherin. Downregulation of E-cadherin is one of the hallmarks of epithelial mesenchymal transition (EMT), a critical feature of normal embryonic development, which is also utilized by malignant epithelial tumors to spread beyond their origin (2-4). ZEB1 mutations are associated with posterior corneal dystrophy, and ZEB2 mutations were reported to be associated with Hirschsprung (HSCR) disease (5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The Hippo pathway is an important evolutionarily conserved signaling pathway that controls organ size and tumor suppression by inhibiting cell proliferation and promoting apoptosis (1,2). An integral function of the Hippo pathway is to repress the activity of Yes-associated protein (YAP), a proposed oncogene whose activity is regulated by phosphorylation and subcellular localization (3,4). When the Hippo pathway is turned off, YAP is phosphorylated and translocates to the nucleus where it associates with various transcription factors including members of the transcriptional enhancer factor (TEF) family, also known as the TEA domain (TEAD) family (TEAD1-4) (5,6). Although widely expressed in tissues, the TEAD family proteins have specific tissue and developmental distributions. YAP/TEAD complexes regulate the expression of genes involved in cell proliferation and apoptosis (5).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: The trefoil factor (TFF) family of proteins (TFF1/pS2, TFF2, and TFF3) are a group of highly conserved, secreted polypeptides that are expressed by mucus-secreting cells of the gastrointestinal tract. Within the gastrointestinal tract, TFFs display both common and distinct expression patterns (1). Collectively, the TFF family of proteins play a prominant role in the protection and repair of the mucous epithelia lining the gastrointestinal tract through their interactions with mucins (2). TFFs have been shown to regulate a number of cellular processes such as migration, apoptosis, and proliferation. In humans, dysregulated expression of TFFs has been observed in inflammatory bowel diseases as well as tumors of the breast, colon, lung, and stomach (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Transforming growth factor-β (TGF-β) superfamily members are critical regulators of cell proliferation and differentiation, developmental patterning and morphogenesis, and disease pathogenesis (1-4). TGF-β elicits signaling through three cell surface receptors: type I (RI), type II (RII), and type III (RIII). Type I and type II receptors are serine/threonine kinases that form a heteromeric complex. In response to ligand binding, the type II receptors form a stable complex with the type I receptors allowing phosphorylation and activation of type I receptor kinases (5). The type III receptor, also known as betaglycan, is a transmembrane proteoglycan with a large extracellular domain that binds TGF-β with high affinity but lacks a cytoplasmic signaling domain (6,7). Expression of the type III receptor can regulate TGF-β signaling through presentation of the ligand to the signaling complex. The only known direct TGF-β signaling effectors are the Smad family proteins, which transduce signals from the cell surface directly to the nucleus to regulate target gene transcription (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Transforming growth factor-β (TGF-β) superfamily members are critical regulators of cell proliferation and differentiation, developmental patterning and morphogenesis, and disease pathogenesis (1-4). TGF-β elicits signaling through three cell surface receptors: type I (RI), type II (RII), and type III (RIII). Type I and type II receptors are serine/threonine kinases that form a heteromeric complex. In response to ligand binding, the type II receptors form a stable complex with the type I receptors allowing phosphorylation and activation of type I receptor kinases (5). The type III receptor, also known as betaglycan, is a transmembrane proteoglycan with a large extracellular domain that binds TGF-β with high affinity but lacks a cytoplasmic signaling domain (6,7). Expression of the type III receptor can regulate TGF-β signaling through presentation of the ligand to the signaling complex. The only known direct TGF-β signaling effectors are the Smad family proteins, which transduce signals from the cell surface directly to the nucleus to regulate target gene transcription (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: The Thy1/CD90 cell surface antigen is a GPI-anchored, developmentally regulated protein involved in signaling cascades that mediate neurite outgrowth, T cell activation, tumor suppression, apoptosis, and fibrosis (1). Thy1/CD90 is highly expressed on the surface of adult neurons and is thought to play a role in modulating adhesive and migratory events, such as neurite extension (1,2). Decreased Thy1/CD90 mRNA and protein expression is associated with the development of epithelial ovarian cancer, suggesting a role as a putative tumor suppressor gene of human ovarian cancer (3,4). Research studies indicate that Thy1/CD90 knockout mice have impaired cutaneous immune responses and abnormal retinal development (5,6). Thy1/CD90 is epigenetically regulated or deregulated in some disease states, such as pulmonary fibrosis. The potentially reversible hypermethylation of the Thy1/CD90 promoter offers the possibility of novel therapeutic options in this disease (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Thyroid Transcription Factor 1 (TTF-1, also known as NKX2-1), a member of the NKX homeobox transcription factor family, was initially discovered in the FRTL-5 rat thyroid cell line (1). Subsequent studies have shown that TTF-1 plays an important role in differentiation and morphogenesis of the developing thyroid, lung, and ventral forebrain (2). TTF-1 controls the expression of several genes, some of which are tissue specific, such as: thyroglobulin, thyroperoxidase, and the thyrotropin receptor in the thyroid; and surfactant proteins and clara cell secretory protein in the lung (2,3). Investigators have found that TTF-1 is expressed in malignant tumors of the thyroid and lung, and it is commonly used as a marker for both primary and malignant lung cancers (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: TPP1 is encoded by the the ACD gene, and is one of six core proteins of the shelterin complex (TRF1, TRF2, Rap1, TIN2, POT1 and TPP1) that regulates telomere length and integrity. This nuclear protein complex localizes to telomeres, and protects the natural ends of chromosomes from inappropriate processing by DNA repair pathways (1). TPP1 was identified in screens for proteins that bind TIN2, which is considered to be the central component of the shelterin complex (1). TPP1 contains two protein-protein interaction domains that facilitate shelterin complex function: a carboxy-terminal TIN2-binding domain and a more central POT1-binding domain. Heterodimerization of TPP1 with POT1 promotes binding to single-stranded telomeric DNA, which facilitates telomere elongation and protection by the shelterin complex. The TPP1 protein also contains a TEL patch, a collection of surface amino acids that recruits telomerase and modulates its processivity (2). In addition to playing an important role in normal development (3), TPP1 is implicated in the etiology of selected diseases. For example, mutations in ACD that alter the composition of the TEL patch have been linked to Hoyeraal-Hreidarsson syndrome, a clinically severe form of dyskeratosis congenita characterized by hematopoietic stem cell dysfunction, bone marrow failure, and a predisposition to cancer (4,5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: TRA-1-60 and TRA-1-81 antibodies detect antigens present on the surface of human stem, teratocarcinoma, and embryonic germ cells (1). TRA-1-60(S) reacts with a neuraminidase sensitive epitope of a proteoglycan (2,3), while TRA-1-81 reacts with a neuraminidase insensitive epitope on the same antigen. Recently this antigen has been proposed to be a form of the protein podocalyxin (4). TRA-1-60 is also detected in the serum of patients with germ cell tumors (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin)

Background: TRA-1-60 and TRA-1-81 antibodies detect antigens present on the surface of human stem, teratocarcinoma, and embryonic germ cells (1). TRA-1-60(S) reacts with a neuraminidase sensitive epitope of a proteoglycan (2,3), while TRA-1-81 reacts with a neuraminidase insensitive epitope on the same antigen. Recently this antigen has been proposed to be a form of the protein podocalyxin (4). TRA-1-60 is also detected in the serum of patients with germ cell tumors (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The family of alkaline phosphatases in humans is comprised of four members: intestinal, placental, placental-like (germ cell type), and tissue nonspecific. The tissue nonspecific isozyme is also known as the liver/bone/kidney alkaline phosphatase due to its expression in these tissues. It is also highly expressed in embryonic stem (ES) and embryonic carcinoma (EC) cells and is lost as these cells undergo differentiation (1,2). The TRA-2-54 (2J) Mouse mAb specifically detects this isozyme and does not detect the other family members, making it a useful tool for tracking the pluripotency status of ES and EC cells in culture.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: TRIBBLES proteins belong to a small family of serine-threonine kinase-like proteins characterized by the presence of a variant protein kinase motif (lacking a canonical ATP binding site), a MEK-1 binding site, and a C-terminal COP1 site that binds ubiquitin ligase. The tribbles gene was first identified and characterized in Drosophila genetic screens for genes that regulate cell division, gastrulation and oogenesis (1-3). Research studies in Drosophila suggested that Tribbles functions to coordinate cell division by regulating turnover of the cell cycle protein String/cdc25. In contrast to the Drosophila genome, which contains a single tribbles gene, the genomes of mice and humans encode three known TRIBBLES proteins (TRIB1-3), which exhibit both distinct and overlapping patterns of expression and functions (4). For example, TRIB1 and TRIB2, but not TRIB3, were reported to promote degradation of the basic region-leucine zipper transcription factor C/EBPα, a function that appears to be conserved from flies to humans (5,6). TRIB2 is overexpressed in a subset of human AML patient samples, down-regulated in leukemic cells undergoing proliferation arrest (7), and positively regulated by the NOTCH signaling pathway in T cells (8), while retroviral-mediated overexpression of Trib2 in mice was shown to induce transplantable leukemia (7). These finding collectively suggest that TRIB2 functions as an oncogene in the mammalian hematopoietic system (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The transcriptional intermediary factor 1 (TIF1) family represents a group of proteins with multiple histone-binding domains. In humans, this family comprises four proteins, TIF1α/TRIM24, TIF1β/TRIM28/KAP1, TIF1γ/TRIM33/Ectodermin, and TIF1δ/TRIM66, which are characterized by an amino-terminal tripartite motif (TRIM) domain consisting of a RING domain, two B boxes, a coiled-coil domain, and a carboxy-terminal PHD finger and bromodomain (1). Despite their similar overall structure, these proteins have diverse roles in transcriptional regulation. TIF1α functions as a ligand-dependent nuclear receptor coregulator and more recently has been implicated in regulating p53 stability (2). TIF1β is an intrinsic component of the N-CoR1 corepressor complex and the NuRD nucleosome-remodeling complex (3) and functions as a corepressor for Kruppel-associated box (KRAB) zinc-finger transcription factors (4). Furthermore, TIF1β promotes heterochromatin-mediated gene silencing formation by serving as a cofactor for heterochromatin protein HP1 (5). TIF1δ expression is restricted to the testis and has been shown to interact with HP1γ (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Van Gogh-like proteins (VANGL1, VANGL2) are human orthologs of Drosophila Van Gogh (Vang/Stbm), a multi-pass transmembrane protein that is required to establish cell polarity in embryonic eyes, legs, and bristles (1,2). As in Drosophila, mammalian VANGL proteins are core components of the planar cell polarity (PCP) pathway that promotes asymmetric orientation of cells across a planar surface, and drives convergence-extension movements that are critical for tissue morphogenesis (3). Mutations in the human VANGL1 gene have been identified in patients diagnosed with neural tube defects (e.g., spina bifida), providing evidence that VANGL1 plays a role in human embryonic morphogenesis (4,5). These findings are supported by genetic studies in mice, where mutations in both Vangl1 and Vangl2 result in neural tube defects (6,7). A possible role for VANGL in tumor progression is suggested by an increased expression of VANGL1 mRNA in breast cancer patients with an elevated risk of relapse (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: WIF1 (Wnt inhibitory factor 1) is a secreted protein that binds to Wnt proteins and inhibits their activity (1). It contains an N-terminal WIF domain and five EGF-like repeats (2). The WIF1 ortholog in Drosophila, Shifted, is required for Hedgehog stability and diffusion (3,4). It has been reported that WIF1 expression is downregulated in many types of cancers (5-8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The Wnt family includes several secreted glycoproteins that play important roles in animal development (1). There are 19 Wnt genes in the human genome that encode functionally distinct Wnt proteins (2). Wnt members bind to the Frizzled family of seven-pass transmembrane proteins and activate several signaling pathways (3). The canonical Wnt/β-catenin pathway also requires a coreceptor from the low-density lipoprotein receptor family (4). Aberrant activation of Wnt signaling pathways is involved in several types of cancers (5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The Wnt family includes several secreted glycoproteins that play important roles in animal development (1). There are 19 Wnt genes in the human genome that encode functionally distinct Wnt proteins (2). Wnt members bind to the Frizzled family of seven-pass transmembrane proteins and activate several signaling pathways (3). The canonical Wnt/β-catenin pathway also requires a coreceptor from the low-density lipoprotein receptor family (4). Aberrant activation of Wnt signaling pathways is involved in several types of cancers (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Wilms' Tumor 1 (WT1) is a transcription factor named from Wilms' Tumor 1, an embryonal malignancy of the kidneys that is caused by mutations in the WT1 gene (1). It is highly important in development, particularly of the genitourinary system, and mutations and dysregulation of expression of WT1 result in a variety of syndromes affecting the genitourinal system and other tissues (2-5).WT1 has a myriad of biological functions and a host of interacting partners and target genes (6). It can behave as a transcriptional activator, or a repressor, and can act as an oncogene or a tumor suppressor (7). It exerts influence over the epigenetic landscape, and also has post translational influence of gene expression through RNA interactions (8). The diverse biological roles of WT1 have been attributed to the existence of multiple isoforms and post translation modifications of the protein (9).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Wilms' Tumor 1 (WT1) is a transcription factor named from Wilms' Tumor 1, an embryonal malignancy of the kidneys that is caused by mutations in the WT1 gene (1). It is highly important in development, particularly of the genitourinary system, and mutations and dysregulation of expression of WT1 result in a variety of syndromes affecting the genitourinal system and other tissues (2-5).WT1 has a myriad of biological functions and a host of interacting partners and target genes (6). It can behave as a transcriptional activator, or a repressor, and can act as an oncogene or a tumor suppressor (7). It exerts influence over the epigenetic landscape, and also has post translational influence of gene expression through RNA interactions (8). The diverse biological roles of WT1 have been attributed to the existence of multiple isoforms and post translation modifications of the protein (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: WTX (Wilms’ tumor gene on the X chromosome) is a developmentally regulated gene with a potentially important role in kidney development (1). Functional studies of WTX suggest that it acts as a tumor suppressor gene in renal cells by promoting β-catenin ubiquitination and degradation, thereby antagonizing WNT/β-catenin signaling (1,2). WTX is found to be inactivated in 30% of Wilms’ tumors, mostly by chromosomal deletion (3). Wilms’ tumor is a pediatric kidney cancer that arises from cells that fail to differentiate during kidney development (4). Inactivation of the WT1 tumor suppressor gene accounts for 10-15% of Wilms’ tumor cases (5). WTX has been shown to enhance WT1-mediated transactivation, suggesting a physiologically significant interaction between WT1 and WTX (6). WTX may be directly involved in the transcriptional regulation of cellular differentiation in the kidney through interactions with WT1 and other transcription factors (6).