Microsize antibodies for $99 | Learn More >>

Product listing: Ceruloplasmin (D7Q5W) Rabbit mAb, UniProt ID P00450 #98971 to PBEF/NAMPT (D1K6D) Rabbit mAb, UniProt ID P43490 #61122

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Ceruloplasmin is a copper-binding glycoprotein with ferroxidase activity. It oxidizes Fe2+ to Fe3+, facilitating iron transport across the cell membrane (1). Mutation in Ceruloplasmin causes aceruloplasminemia, an autosomal recessive disorder of iron metabolism characterized by iron accumulation in the brain as well as visceral organs, resulting in retinal degeneration, diabetes mellitus and neurological disturbances (2,3). Ceruloplasmin level in serum has been explored as a diagnostic marker for Wilson disease and ischemic heart disease (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: CDGSH iron-sulfur domain-containing protein 1 (CISD1), also known as mitochondrial outer membrane iron-sulfur (2Fe-2S) protein (mitoNEET) was first identified as the target for the drug pioglitazone, used to treat diabetes (1-3). CISD1/mitoNEET regulates both mitochondrial iron transport into the matrix and mitochondrial respiratory capacity. It has also been shown to affect the dynamics of cellular and whole-body lipid homeostasis (2,4). Furthermore, research studies have shown that CISD1/mitoNEET is overexpressed in human epithelial breast cancer cells and it has been considered a potential chemotherapeutic target (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Cytochrome P450 2D6 (CYP2D6) is a member of the cytochrome P450 superfamily of enzymes. CYP2D6 is located in the endoplasmic reticulum where it oxidizes substrates such as drugs and environmental chemicals (1,2). CYP2D6 metabolizes more than 25% of current commonly used drugs including antidepressants, antipsychotics, analgesics, beta-adrenergic blocking agents, antiarrythmics, and antiemetics. The CYP2D6 gene is highly polymorphic in humans, resulting in phenotypes that vary from poor metabolizer to super metabolizer. A patient's CYP2D6 genotype was shown to be a good predictor of drug response and side effects and is thus used to guide treatments (3-5). Although abundantly expressed in liver, CYP2D6 is also expressed in other organs including brain. In brain, CYP2D6 and other CYP family members are expressed in a cell-specific, region-specific manner (6-8). CYP2D6 functions as a neuroprotective enzyme that increases with age and is induced by nicotine and alcohol (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Ubiquitin regulatory X domain-containing protein 8 (UBXD8, also known as ETEA and FAF2) is a hairpin-anchored endoplasmic reticulum (ER) protein involved in ER associated degradation (ERAD). It influences this process by promoting translocation of misfolded proteins from the ER lumen to the cytoplasm for proteasome-mediated degradation (1). UBXD8 is a sensor for unsaturated fatty acids. In the absence of fatty acids UBXD8 binds to and targets INSIG1 for degradation, ultimately resulting in activation of SREBP-1. Under this condition, UBXD8 also inhibits triglyceride synthesis by blocking the conversion of diacylglycerols into triglycerides. Unsaturated fatty acids trigger UBXD8 polymerization and dissociation of UBXD8/INSIG1 complex, leading to feedback inhibition of SREBP-1 (2, 3). This induces UBXD8 to translocate from the ER to lipid droplets, where it binds to ATGL and inhibits its lipase activity (4, 5). The complex containing p97 and UBXD8 is reported to promote disassembly of the ribonucleoprotein complex to control mRNA stability (6). In addition, UBXD8 binds to and promotes degradation of neurofibromin (NF1), suggesting a role in regulating Ras activity (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Iron-sulfur (Fe-S) clusters (ISC) are cofactors for many proteins that display a wide range of biological functions, such as DNA maintenance, transcription, translation, cellular metabolism, electron transport, and oxidative phosphorylation (1). While structurally simple, the synthesis and insertion of ISC into Fe-S proteins are complex processes that involve many different proteins (2). FAM96B, also known as MIP18 (MSS19-interacting protein of 18kDa), is a component of the cytosolic Fe-S protein assembly complex (3,4). FAM96B is in a complex with MMS19 that is responsible for assembly of multiple nuclear Fe-S proteins involved in DNA metabolism (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: FTO (fat mass and obesity-associated protein) is the first obesity gene product identified by genome-wide association studies and it is associated with the largest effect size for this class of proteins (1-4). Multiple single-nucleotide polymorphisms (SNPs) in the first intron of the FTO gene have been associated with increased body weight and obesity. Further studies reported that FTO risk alleles were associated with an increase in energy intake, a reduction of activity, and possibly an increased daily fat intake (4).FTO is a DNA and RNA demethylase that catalyzes the oxidative demethylation of thymidine and uracil. Among its targets is an mRNA subset involved in regulation of learning, reward behavior, motor functions, and feeding (5). Loss of the FTO gene in mice leads to postnatal growth retardation and a significant reduction in adipose tissue. Mice deficient in the FTO gene have lean body mass due to increased energy expenditure and systemic activation of sympathetic neurons, while overexpression of FTO in mice leads to increased food intake and results in obesity. These results demonstrate that FTO is functionally involved in energy homeostasis (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: FTO (fat mass and obesity-associated protein) is the first obesity gene product identified by genome-wide association studies and it is associated with the largest effect size for this class of proteins (1-4). Multiple single-nucleotide polymorphisms (SNPs) in the first intron of the FTO gene have been associated with increased body weight and obesity. Further studies reported that FTO risk alleles were associated with an increase in energy intake, a reduction of activity, and possibly an increased daily fat intake (4).FTO is a DNA and RNA demethylase that catalyzes the oxidative demethylation of thymidine and uracil. Among its targets is an mRNA subset involved in regulation of learning, reward behavior, motor functions, and feeding (5). Loss of the FTO gene in mice leads to postnatal growth retardation and a significant reduction in adipose tissue. Mice deficient in the FTO gene have lean body mass due to increased energy expenditure and systemic activation of sympathetic neurons, while overexpression of FTO in mice leads to increased food intake and results in obesity. These results demonstrate that FTO is functionally involved in energy homeostasis (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Glutamate-ammonia ligase (GLUL), also known as glutamine synthetase (GS), catalyzes the de novo synthesis of glutamine from glutamate and ammonia. GLUL is ubiquitously expressed with particularly high expression in the muscle, liver, and brain (1). GLUL expression is elevated in various cancers. Its expression is upregulated by oncogenic c-Myc (2). High expression of GLUL in breast cancer patients is associated with larger tumor size and high level of HER2 expression. It is a predictor of poor survival in patients with glioma and liver cancers (3-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin)

Background: Glutamate-ammonia ligase (GLUL), also known as glutamine synthetase (GS), catalyzes the de novo synthesis of glutamine from glutamate and ammonia. GLUL is ubiquitously expressed with particularly high expression in the muscle, liver, and brain (1). GLUL expression is elevated in various cancers. Its expression is upregulated by oncogenic c-Myc (2). High expression of GLUL in breast cancer patients is associated with larger tumor size and high level of HER2 expression. It is a predictor of poor survival in patients with glioma and liver cancers (3-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: PCPB2 (also known as hnRNP E2) is an RNA-binding protein that interacts in a sequence-specific fashion with single-stranded poly (rC). Through their poly(rC)-binding ability, PCBPs regulate mRNA stability and translation (1,2). PCBP2 is an iron chaperone; it delivers iron to ferritin for storage and mediates metalation of certain iron-containing proteins (3-5). PCBP2 interacts with the iron importer DMT1 (divalent metal transporter 1) and the iron exporter FPN1 (ferroportin 1) and regulates their activities (6,7). PCBP2 is induced by viral infection and targets MAVS for polyubiquitination and degradation (8-10). Recent reports demonstrate that it is involved in Hippo signaling, miRNA processing, immune suppression, and cancer (11-15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Heme oxygenase (HO) is the rate-limiting enzyme in the catabolism of heme that results in the release of carbon monoxide, iron, and biliverdin (1). The products of this enzymatic reaction play important biological roles in antioxidant, anti-inflammatory and cytoprotective functions (2). Heme oxygenase comprises two isozymes, including the constitutively expressed HO-2 isozyme and the inducible HO-1 isozyme (3). Inducible HO-1 is expressed as an adaptive response to several stimuli, including heme, metals, and hormones (4). The induction of HO-1 has been implicated in numerous disease states, such as transplant rejection, hypertension, atherosclerosis, Alzheimer disease, endotoxic shock, diabetes, inflammation, and neurological disorders (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Heme oxygenase (HO) is the rate-limiting enzyme in the catabolism of heme that results in the release of carbon monoxide, iron, and biliverdin (1). The products of this enzymatic reaction play important biological roles in antioxidant, anti-inflammatory and cytoprotective functions (2). Heme oxygenase comprises two isozymes, including the constitutively expressed HO-2 isozyme and the inducible HO-1 isozyme (3). Inducible HO-1 is expressed as an adaptive response to several stimuli, including heme, metals, and hormones (4). The induction of HO-1 has been implicated in numerous disease states, such as transplant rejection, hypertension, atherosclerosis, Alzheimer disease, endotoxic shock, diabetes, inflammation, and neurological disorders (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heme oxygenase (HO) is the rate-limiting enzyme in the catabolism of heme that results in the release of carbon monoxide, iron, and biliverdin (1). The products of this enzymatic reaction play important biological roles in antioxidant, anti-inflammatory and cytoprotective functions (2). Heme oxygenase comprises two isozymes, including the constitutively expressed HO-2 isozyme and the inducible HO-1 isozyme (3). Inducible HO-1 is expressed as an adaptive response to several stimuli, including heme, metals, and hormones (4). The induction of HO-1 has been implicated in numerous disease states, such as transplant rejection, hypertension, atherosclerosis, Alzheimer disease, endotoxic shock, diabetes, inflammation, and neurological disorders (1,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: IDH2 is one of three isocitrate dehydrogenases (IDH1-3) that catalyze the oxidative decarboxylation of isocitrate to produce CO2 and α-ketoglutarate (α-KG). These enzymes belong to two distinct subclasses that utilize either NAD or NADP+ as an electron acceptor. IDH2 is an NADP+-dependent isocitrate dehydrogenase expressed primarily in the mitochondria, where it also functions in the TCA cycle (1,2). Mutations in IDH2 or its cytoplasmic counterpart (IDH1) have been reported in glioblastoma multiforme (3), acute myeloid leukemia (4,5), and other malignancies (6). Research studies have shown that gain-of-function mutations in IDH2 can lead to the accumulation and secretion of the oncometabolite R-2-hydroxyglutarate (2HG) in cancer cells (6,7).

$269
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: IDH2 is one of three isocitrate dehydrogenases (IDH1-3) that catalyze the oxidative decarboxylation of isocitrate to produce CO2 and α-ketoglutarate (α-KG). These enzymes belong to two distinct subclasses that utilize either NAD or NADP+ as an electron acceptor. IDH2 is an NADP+-dependent isocitrate dehydrogenase expressed primarily in the mitochondria, where it also functions in the TCA cycle (1,2). Mutations in IDH2 or its cytoplasmic counterpart (IDH1) have been reported in glioblastoma multiforme (3), acute myeloid leukemia (4,5), and other malignancies (6). Research studies have shown that gain-of-function mutations in IDH2 can lead to the accumulation and secretion of the oncometabolite R-2-hydroxyglutarate (2HG) in cancer cells (6,7).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Insulin-like growth factor-binding proteins (IGFBPs) play an integral role in modifying insulin-like growth factor (IGF) actions in a wide variety of cell types. There are six known IGFBP family members (IGFBP1-6), which are structurally related, but encoded by distinct genes. IGFBPs have high affinity for IGFs; in some contexts, IGFBPs inhibit IGF actions by preventing access to IGF receptors, while in others they potentiate IGF actions by facilitating ligand-receptor interaction (1-3). IGFBP1 is produced primarily by the liver and secreted into circulation, and studies show its expression can be negatively regulated by insulin (4, 5). Notably, low levels of IGFBP1 were shown to predict the future onset of Type 2 diabetes (5). Reduced expression of IGFBP1 expression was also associated with tumor progression in breast cancer, prostate cancer, pancreatic cancer and colorectal cancer, possibly stemming from reduced inhibition of mitogenic IGF signaling (6-9). Notably however, other research studies have reported increased levels of IGFBP1 in selected tumor types; in human schwannoma, increased IGFBP1 was associated with stimulation of the integrin β1/FAK pathway, supporting the concept of IGF-independent signaling functions for selected IGFBPs (10,11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: IRG1 (Immune-responsive gene 1) is one of the most up-regulated genes in macrophages under proinflammatory conditions (1). It is also highly expressed in the pregnant uterus during implantation (2,3). IRG1 is a cis-aconitate decarboxylase that produces itaconic acid by decarboxylating cis-aconic acid, an intermediate of the tricarboxylic acid cycle (4). Itaconic acid is an endogenous inhibitor of succinate dehydrogenase, linking macrophage metabolic rewiring and regulation of inflammation (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Iron regulatory proteins (IRPs; also known as IREBs) are RNA-binding proteins that recognize iron-responsive elements (IREs) and play an important role in maintaining iron homeostasis in mammalian cells. IREs are conserved cis-regulatory hairpin structures located within the 5’ or 3’ untranslated regions (UTRs) of target mRNAs. IRPs inhibit translation when bound to IREs within the 5’ UTR of mRNA encoding for proteins involved in iron storage, export, and utilization. IRP binding to multiple IREs within the 3’ UTR of transferin receptor 1 (TFR1) mRNA prevents its degradation, thereby augmenting translation of TFR1 and increasing iron uptake into cells (1-3). Dysregulation of IRPs has been associated with human cancers (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Iron regulatory proteins (IRPs; also known as IREBs) are RNA-binding proteins that recognize iron-responsive elements (IREs) and play an important role in maintaining iron homeostasis in mammalian cells. IREs are conserved cis-regulatory hairpin structures located within the 5’ or 3’ untranslated regions (UTRs) of target mRNAs. IRPs inhibit translation when bound to IREs within the 5’ UTR of mRNA encoding for proteins involved in iron storage, export, and utilization. IRP binding to multiple IREs within the 3’ UTR of transferin receptor 1 (TFR1) mRNA prevents its degradation, thereby augmenting translation of TFR1 and increasing iron uptake into cells (1-3). Dysregulation of IRPs has been associated with human cancers (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Insulin receptor substrate 1 (IRS-1) is one of the major substrates of the insulin receptor kinase (1). IRS-1 contains multiple tyrosine phosphorylation motifs that serve as docking sites for SH2-domain containing proteins that mediate the metabolic and growth-promoting functions of insulin (2-4). IRS-1 also contains over 30 potential serine/threonine phosphorylation sites. Ser307 of IRS-1 is phosphorylated by JNK (5) and IKK (6) while Ser789 is phosphorylated by SIK-2, a member of the AMPK family (7). The PKC and mTOR pathways mediate phosphorylation of IRS-1 at Ser612 and Ser636/639, respectively (8,9). Phosphorylation of IRS-1 at Ser1101 is mediated by PKCθ and results in an inhibition of insulin signaling in the cell, suggesting a potential mechanism for insulin resistance in some models of obesity (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Lipocalin 2 (LCN2), also known as neutrophil gelatinase-associated lipocalin (NGAL), belongs to the lipocalin family. Proteins in this family exhibit considerable sequence diversity, but share a highly conserved structure composed of an eight-stranded antiparallel beta-barrel that encloses an internal ligand-binding site (1,2). LCN2 is considered as an iron transporter. LCN2 can bind bacterial siderophores and inhibits bacterial growth by iron depletion (3). It can also bind endogenous compounds like catechol in complex with iron (4). LCN2 was originally identified in neutrophils, and its expression was induced in many other tissues like kidney and liver in response to various pathologic states, such as infection, ischemia, and acute kidney injury. LCN2 is considered a biomarker for conditions like ischemic stroke, acute kidney injury, inflammatory and metabolic diseases (5-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Molecule interacting with CasL protein 1 (MICAL1) is a Protein-methionine sulfoxide oxidase. MICAL1 can bind directly to F-actin and oxidize specific methionine residues to promote actin filament disassembly (1-3). MICAL1 is an important component of semaphorin signaling cascades that has effects on cell movement, angiogenesis, immunology, diabetes, and cancer (4-7). MICAL1 binds to NDR1/2 and antagonizes MST1-induced NDR activation and apoptosis (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: MRP3/ABCC3 belongs to the super family of ATP-binding cassette (ABC) transporters. It is a member of the MRP subfamily that is expressed in various organs including liver, gallbladder, small intestine, colon, kidney, and adrenal gland (1-3). MRP3 is involved in multi-drug resistance (1). It facilitates the efflux of organic anions including monoanionic bile acid and anti-cancer reagents such as etoposide and paclitaxel from liver and small intestine into blood (4-7). Expression of MRP3 is increased in the cholestatic human and rat liver, suggesting its role in cholehepatic and enterohepatic bile circulation and in protecting liver from toxic bile salts (2,8). MRP3 expression is also upregulated in people with Dubin-Johnson Syndrome (DJS) who lack functional MRP2 in the liver, which implicates the compensatory role of MRP3 in the absence of functional MRP2 (4).Elevated expression of MRP3 has been detected in various cancer types such as hepatocellular carcinomas, primary ovarian cancer, and adult acute lymphoblastic leukemia (ALL) (9-11). Overexpression of MRP3 was reported to be a prognostic factor in ALL and adult acute myeloid leukemia (AML) (11,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The multidrug resistance-associated protein 6 (MRP6, ABCC6) is a member of ATP-binding cassette (ABC) family transporters that move drugs and hydrophobic compounds across cell membranes. The MRP6 protein is expressed mainly in liver and kidney, and in other tissues to a lesser extent (1). Identified MRP6 substrates include the glutathione conjugate of N-ethylmaleimide (NEM-GS) and leukotriene C4 (LTC4), with more tentative MRP6 substrates under investigation (2,3). Research studies show that increased MRP6 expression correlates with induced cholesterol biosynthesis, which suggests that MRP6 may be involved in lipid and cholesterol homeostasis (4). A small isoform of MRP6 is up-regulated in HBV infected hepatocytes and protects the cells from apoptosis mediated by caspase 3 and caspase 8 (5,6). Mutations in the corresponding ABCC6 gene cause pseudoxanthoma elasticum (PXE), an autosomal recessive disorder that is characterized by the accumulation of mineralized and fragmented elastic fibers in the skin, eyes, and arteries (7,8). Mutations in ABCC6 also result in generalized arterial calcification of infancy, an ectopic calcification disease that lies along a spectrum of similar disorders with PXE (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: NADP+ dependent methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) is a mitochondrial enzyme that catalyzes the production of formate from 10-formyl-tetrahydrofolate, the last step in one-carbon (1-C) flow from mitochondria to cytoplasm (1,2). These one-carbon end products are required for de novo synthesis of thymidylate and purines. In the mitochondria, these essential one-carbon products are formed by a series of reactions catalyzed by a pair of enzymes (MTHFD2 and MTHFD1L), but by the trifunctional MTHFD1 enzyme in the cytoplasm (3). The 10-formyl-tetrahydrofolate synthetase MTHFD1L is widely expressed in most adult tissues and at all stages of mammalian embryonic development (1). Research studies using MTHFD1L knockout mice indicate that MTHFD1L plays an essential role in neural tube formation; mice lacking MTHFD1L displayed neural tube and craniofacial defects leading to embryonic lethality (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: MTHFD2 is a bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase involved in mitochondrial folate metabolism (1). MTHFD2 expression is developmentally regulated, as it is expressed in embryos but not in most adult tissues. Recent research studies have shown that MTHFD2 is consistently overexpressed in many cancer types and correlated with poor survival in breast cancer (2-5). Overexpression of MTHFD2 promotes cell proliferation while its depletion induces cell death in human cancer cells (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Nutrient-deprivation autophagy factor-1 (NAF-1) (also known as CISD2, CDGSH iron-sulfur domain-containing protein 2) is a member of NEET family of 2Fe-2S proteins, characterized by a unique CDGSH sequence at their Fe-S-cluster-binding domain (1). NAF-1/CISD2 is a multifunctional protein. In addition to its role in iron and ROS homeostasis, it has been shown to play a role in autophagy, neurodegenerative diseases, and aging (2-7). Enhanced expression of NAF-1/CISD2 is associated with many types of cancer. Silencing of NAF-1/CISD2 expression in cancer cells significantly inhibited proliferation and tumorigenicity; while overexpression of NAF-1/CISD2 significantly enhanced proliferation (2, 8, 9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Nicotinamide mononucleotide adenylyl transferases (NMNATs) catalyze the reversible reaction of ATP with NaMN (nicotinic acid mononucleotide) or NMN (nicotinamide mononucleotide) to produce NaAD (nicotinic acid adenine dinucleotide) or NAD (nicotinamide adenine dinucleotide). NAD is an essential cofactor or substrates for many enzymes like PARP1 and Sirt1 that regulate diverse cellular processes including oxidative reactions and transcription. NMNATs maintain NAD levels for internal homeostasis (1,2). NMNAT1 is localized to the nucleus and loss-of-function mutant in mice causes embryonic lethality (3). In humans, several different NMNAT1 mutations are associated with Leber congenital amaurosis (LCA), the most common cause of inherited childhood blindness (4-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Mitochondria continuously divide and fuse. This dynamic process is highly regulated in response to various physiological cues (1,2). The GTPase OPA1 mediates the fusion of the mitochondrial inner membrane. Constitutive proteolytic processes mediated by OMA1 (S1 site) and YME1L (S2 site) convert long isoforms (L-OPA1) into short isforms (S-OPA1). The balance between L-OPA1 and S-OPA1 is required to maintain a normal morphology of mitochondria (3,4).OMA1 is synthesized as a precursor and processed into a mature form (5,6). OMA1 is constitutively active and cleaves L-OPA1 at the S1 site. However, various stress stimuli can further activate OMA1 and result in the rapid and complete conversion of L-OPA1 into S-OPA1, which inhibits fusion and causes mitochondrial fragmentation (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Nicotinamide phosphoribosyltransferase (NAMPT; also known as Pre-B cell-enhancing factor PBEF) catalyzes the synthesis of nicotinamide mononucleotide (NMN) from nicotinamide and 5-phosphoribosylpyrophosphate (PRPP), the rate-limiting step in the NAD biosynthesis pathway starting from nicotinamide (1,2). NAD biosynthesis mediated by NAMPT plays a critical role in glucose-stimulated insulin secretion in pancreatic beta cells (3). Both NAMPT inhibitors and activators have been sought for clinical applications (4,5). NAMPT has intra- and extracellular forms (iNAMPT and eNAMPT), and deacetylation of iNAMPT by SIRT1 promotes eNAMPT secretion through a nonclassical secretory pathway (3,6). eNAMPT, independent of its enzymatic activity, can induce epithelial-to-mesenchymal transition in mammary epithelial cells and promote monocyte differentiation into a tumor-supporting M2 macrophage (7,8).