Interested in promotions? | Click here >>

Product listing: Aiolos (D1C1E) Rabbit mAb (Alexa Fluor® 488 Conjugate), UniProt ID Q9UKT9 #94568 to Blimp-1/PRDI-BF1 (C14A4) Rabbit mAb, UniProt ID O75626 #9115

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Aiolos (D1C1E) Rabbit mAb #15103.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Aiolos is an Ikaros family transcription factor composed of several zinc fingers that mediate DNA binding and homodimerization or heterodimerization with other Ikaros family members (1). Multiple Aiolos isoforms are generated through alternative splicing of the portion of the transcript encoding the amino-terminal zinc fingers (2). Aiolos is expressed by lymphoid tissues, with highest expression levels seen in mature B and T cells (1). Ikaros family proteins control lymphocyte development by recruiting chromatin remodeling complexes to DNA (3). B cells from mice lacking Aiolos have a reduced threshold for activation, increased proliferation, and elevated levels of IgG and IgE. In addition, Aiolos null mice develop B cell lymphomas (4). In T cells, Aiolos contributes to Th17 cell differentiation by suppressing IL-2 expression (5). Aberrant expression of Aiolos in transformed epithelial cells promotes anchorage independence through downregulation of adhesion-related genes (6). Alterations in the Aiolos gene are observed in near haploid acute lymphoblastic leukemia, and the genetic locus containing Aiolos is linked to increased susceptibility to rheumatoid arthritis and systemic lupus erythematosus (7-9).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Aiolos (D1C1E) Rabbit mAb #15103.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Aiolos is an Ikaros family transcription factor composed of several zinc fingers that mediate DNA binding and homodimerization or heterodimerization with other Ikaros family members (1). Multiple Aiolos isoforms are generated through alternative splicing of the portion of the transcript encoding the amino-terminal zinc fingers (2). Aiolos is expressed by lymphoid tissues, with highest expression levels seen in mature B and T cells (1). Ikaros family proteins control lymphocyte development by recruiting chromatin remodeling complexes to DNA (3). B cells from mice lacking Aiolos have a reduced threshold for activation, increased proliferation, and elevated levels of IgG and IgE. In addition, Aiolos null mice develop B cell lymphomas (4). In T cells, Aiolos contributes to Th17 cell differentiation by suppressing IL-2 expression (5). Aberrant expression of Aiolos in transformed epithelial cells promotes anchorage independence through downregulation of adhesion-related genes (6). Alterations in the Aiolos gene are observed in near haploid acute lymphoblastic leukemia, and the genetic locus containing Aiolos is linked to increased susceptibility to rheumatoid arthritis and systemic lupus erythematosus (7-9).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 700 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Aiolos (D1C1E) Rabbit mAb #15103.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Aiolos is an Ikaros family transcription factor composed of several zinc fingers that mediate DNA binding and homodimerization or heterodimerization with other Ikaros family members (1). Multiple Aiolos isoforms are generated through alternative splicing of the portion of the transcript encoding the amino-terminal zinc fingers (2). Aiolos is expressed by lymphoid tissues, with highest expression levels seen in mature B and T cells (1). Ikaros family proteins control lymphocyte development by recruiting chromatin remodeling complexes to DNA (3). B cells from mice lacking Aiolos have a reduced threshold for activation, increased proliferation, and elevated levels of IgG and IgE. In addition, Aiolos null mice develop B cell lymphomas (4). In T cells, Aiolos contributes to Th17 cell differentiation by suppressing IL-2 expression (5). Aberrant expression of Aiolos in transformed epithelial cells promotes anchorage independence through downregulation of adhesion-related genes (6). Alterations in the Aiolos gene are observed in near haploid acute lymphoblastic leukemia, and the genetic locus containing Aiolos is linked to increased susceptibility to rheumatoid arthritis and systemic lupus erythematosus (7-9).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Aiolos (D1C1E) Rabbit mAb #15103.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Aiolos is an Ikaros family transcription factor composed of several zinc fingers that mediate DNA binding and homodimerization or heterodimerization with other Ikaros family members (1). Multiple Aiolos isoforms are generated through alternative splicing of the portion of the transcript encoding the amino-terminal zinc fingers (2). Aiolos is expressed by lymphoid tissues, with highest expression levels seen in mature B and T cells (1). Ikaros family proteins control lymphocyte development by recruiting chromatin remodeling complexes to DNA (3). B cells from mice lacking Aiolos have a reduced threshold for activation, increased proliferation, and elevated levels of IgG and IgE. In addition, Aiolos null mice develop B cell lymphomas (4). In T cells, Aiolos contributes to Th17 cell differentiation by suppressing IL-2 expression (5). Aberrant expression of Aiolos in transformed epithelial cells promotes anchorage independence through downregulation of adhesion-related genes (6). Alterations in the Aiolos gene are observed in near haploid acute lymphoblastic leukemia, and the genetic locus containing Aiolos is linked to increased susceptibility to rheumatoid arthritis and systemic lupus erythematosus (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Aiolos is an Ikaros family transcription factor composed of several zinc fingers that mediate DNA binding and homodimerization or heterodimerization with other Ikaros family members (1). Multiple Aiolos isoforms are generated through alternative splicing of the portion of the transcript encoding the amino-terminal zinc fingers (2). Aiolos is expressed by lymphoid tissues, with highest expression levels seen in mature B and T cells (1). Ikaros family proteins control lymphocyte development by recruiting chromatin remodeling complexes to DNA (3). B cells from mice lacking Aiolos have a reduced threshold for activation, increased proliferation, and elevated levels of IgG and IgE. In addition, Aiolos null mice develop B cell lymphomas (4). In T cells, Aiolos contributes to Th17 cell differentiation by suppressing IL-2 expression (5). Aberrant expression of Aiolos in transformed epithelial cells promotes anchorage independence through downregulation of adhesion-related genes (6). Alterations in the Aiolos gene are observed in near haploid acute lymphoblastic leukemia, and the genetic locus containing Aiolos is linked to increased susceptibility to rheumatoid arthritis and systemic lupus erythematosus (7-9).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated AML1 (D33G6) XP® Rabbit mAb #4336.
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry

Background: AML1 (also known as Runx1, CBFA2, and PEBP2αB) is a member of the core binding factor (CBF) family of transcription factors (1,2). It is required for normal development of all hematopoietic lineages (3-5). AML1 forms a heterodimeric DNA binding complex with its partner protein CBFβ and regulates the expression of cellular genes by binding to promoter and enhancer elements. AML1 is commonly translocated in hematopoietic cancers: chromosomal translocations include t(8;21) AML1-ETO, t(12;21) TEL-AML, and t(8;21) AML-M2 (6). Phosphorylation of AML1 on several potential serine and threonine sites, including Ser249, is thought to occur in an Erk-dependent manner (7,8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: AML1 (also known as Runx1, CBFA2, and PEBP2αB) is a member of the core binding factor (CBF) family of transcription factors (1,2). It is required for normal development of all hematopoietic lineages (3-5). AML1 forms a heterodimeric DNA binding complex with its partner protein CBFβ and regulates the expression of cellular genes by binding to promoter and enhancer elements. AML1 is commonly translocated in hematopoietic cancers: chromosomal translocations include t(8;21) AML1-ETO, t(12;21) TEL-AML, and t(8;21) AML-M2 (6). Phosphorylation of AML1 on several potential serine and threonine sites, including Ser249, is thought to occur in an Erk-dependent manner (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: AML1 (also known as Runx1, CBFA2, and PEBP2αB) is a member of the core binding factor (CBF) family of transcription factors (1,2). It is required for normal development of all hematopoietic lineages (3-5). AML1 forms a heterodimeric DNA binding complex with its partner protein CBFβ and regulates the expression of cellular genes by binding to promoter and enhancer elements. AML1 is commonly translocated in hematopoietic cancers: chromosomal translocations include t(8;21) AML1-ETO, t(12;21) TEL-AML, and t(8;21) AML-M2 (6). Phosphorylation of AML1 on several potential serine and threonine sites, including Ser249, is thought to occur in an Erk-dependent manner (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: APOBEC3G, a single-strand DNA deaminase that converts deoxycytidine to deoxyuridine (1-3), is a cellular restriction factor blocking the replication of retroviruses (3). It suppresses the replication of human immunodeficiency virus-1 (HIV-1) in T-cells by being packaged into progeny virions and deaminating cytosine to uracil in the nascent minus-strand viral DNA, leading to the accumulation of mutations in the viral genome (1-4). The HIV-1 virion infectivity factor (Vif) inhibits APOBEC3G activity by preventing its incorporation into progeny virions (4,5). In addition, Vif targets APOBEC3G for ubiquitination and subsequent degradation (5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct immunofluorescent analysis in mouse cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated ASC (D2W8U) Rabbit mAb (Mouse Specific) #67824.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: TMS1 (target of methylation-induced silencing)/ASC (apoptosis-associated speck-like protein containing a CARD), also referred to as PYCARD and CARD5, is a 22-kDa pro-apoptotic protein containing an N-terminal pyrin domain (PYD) and a C-terminal caspase recruitment domain (CARD) (1-2). The ASC/TMS1 gene was originally found to be aberrantly methylated and silenced in breast cancer cells (2), and has since been found to be silenced in a number of other cancers, including ovarian cancer (3), glioblastoma (4), melanoma (5), gastric cancer (6), lung cancer (7), and prostate cancer (8). Expression of ASC/TMS1 can be induced by pro-apoptotic/inflammatory stimuli (9). During apoptosis ASC/TMS1 is re-distributed from the cytosol to the mitochondria and associates with mitochondrial Bax to trigger cytochrome c release and subsequent apoptosis (10). ASC/TMS1 has also been found to be a critical component of inflammatory signaling where it associates with and activates caspase-1 in response to pro-inflammatory signals (11).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated ASC (D2W8U) Rabbit mAb (Mouse Specific) #67824.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: TMS1 (target of methylation-induced silencing)/ASC (apoptosis-associated speck-like protein containing a CARD), also referred to as PYCARD and CARD5, is a 22-kDa pro-apoptotic protein containing an N-terminal pyrin domain (PYD) and a C-terminal caspase recruitment domain (CARD) (1-2). The ASC/TMS1 gene was originally found to be aberrantly methylated and silenced in breast cancer cells (2), and has since been found to be silenced in a number of other cancers, including ovarian cancer (3), glioblastoma (4), melanoma (5), gastric cancer (6), lung cancer (7), and prostate cancer (8). Expression of ASC/TMS1 can be induced by pro-apoptotic/inflammatory stimuli (9). During apoptosis ASC/TMS1 is re-distributed from the cytosol to the mitochondria and associates with mitochondrial Bax to trigger cytochrome c release and subsequent apoptosis (10). ASC/TMS1 has also been found to be a critical component of inflammatory signaling where it associates with and activates caspase-1 in response to pro-inflammatory signals (11).

$121
2 western blots
20 µl
$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct immunofluorescence analysis in mouse cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated ASC (D2W8U) Rabbit mAb (Mouse Specific) #67824.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: TMS1 (target of methylation-induced silencing)/ASC (apoptosis-associated speck-like protein containing a CARD), also referred to as PYCARD and CARD5, is a 22-kDa pro-apoptotic protein containing an N-terminal pyrin domain (PYD) and a C-terminal caspase recruitment domain (CARD) (1-2). The ASC/TMS1 gene was originally found to be aberrantly methylated and silenced in breast cancer cells (2), and has since been found to be silenced in a number of other cancers, including ovarian cancer (3), glioblastoma (4), melanoma (5), gastric cancer (6), lung cancer (7), and prostate cancer (8). Expression of ASC/TMS1 can be induced by pro-apoptotic/inflammatory stimuli (9). During apoptosis ASC/TMS1 is re-distributed from the cytosol to the mitochondria and associates with mitochondrial Bax to trigger cytochrome c release and subsequent apoptosis (10). ASC/TMS1 has also been found to be a critical component of inflammatory signaling where it associates with and activates caspase-1 in response to pro-inflammatory signals (11).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: TMS1 (target of methylation-induced silencing)/ASC (apoptosis-associated speck-like protein containing a CARD), also referred to as PYCARD and CARD5, is a 22-kDa pro-apoptotic protein containing an N-terminal pyrin domain (PYD) and a C-terminal caspase recruitment domain (CARD) (1-2). The ASC/TMS1 gene was originally found to be aberrantly methylated and silenced in breast cancer cells (2), and has since been found to be silenced in a number of other cancers, including ovarian cancer (3), glioblastoma (4), melanoma (5), gastric cancer (6), lung cancer (7), and prostate cancer (8). Expression of ASC/TMS1 can be induced by pro-apoptotic/inflammatory stimuli (9). During apoptosis ASC/TMS1 is re-distributed from the cytosol to the mitochondria and associates with mitochondrial Bax to trigger cytochrome c release and subsequent apoptosis (10). ASC/TMS1 has also been found to be a critical component of inflammatory signaling where it associates with and activates caspase-1 in response to pro-inflammatory signals (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: TMS1 (target of methylation-induced silencing)/ASC (apoptosis-associated speck-like protein containing a CARD), also referred to as PYCARD and CARD5, is a 22-kDa pro-apoptotic protein containing an N-terminal pyrin domain (PYD) and a C-terminal caspase recruitment domain (CARD) (1-2). The ASC/TMS1 gene was originally found to be aberrantly methylated and silenced in breast cancer cells (2), and has since been found to be silenced in a number of other cancers, including ovarian cancer (3), glioblastoma (4), melanoma (5), gastric cancer (6), lung cancer (7), and prostate cancer (8). Expression of ASC/TMS1 can be induced by pro-apoptotic/inflammatory stimuli (9). During apoptosis ASC/TMS1 is re-distributed from the cytosol to the mitochondria and associates with mitochondrial Bax to trigger cytochrome c release and subsequent apoptosis (10). ASC/TMS1 has also been found to be a critical component of inflammatory signaling where it associates with and activates caspase-1 in response to pro-inflammatory signals (11).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Western Blotting

Background: B7 homolog 3 (B7-H3, CD276) is a member of the B7 family of cell surface ligands that regulate T cell activation and immune responses. B7-H3 protein contains two extracellular Ig-like V-type domains and two IgG-like C2-type domains, a transmembrane domain, and a short intracellular domain (1,2). Early research examining the biological process of B7-H3 suggested that B7-H3 is a positive regulator of T cell response (1). Subsequent research studies indicated that B7-H3 is a negative regulator of T cell response, and that the protein inhibits T cell proliferation (2,3). One possibility is that B7-H3 interacts with two distinct sets of receptors, resulting in seemingly opposite biological outcomes (2). B7-H3 is expressed by antigen presenting cells, activated T cells, and a few normal tissues, including placenta and prostate (1,4,5). Expression of B7-H3 is seen in several cancer types, including prostate, breast, colon, lung, and gastric cancers, and in endothelial cells from tumor associated vasculature (6-8).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Western Blotting

Background: B7 homolog 4 (B7-H4, VTCN1) is a member of the B7 family of cell surface ligands that regulate T cell activation and immune responses (1-3). B7-H4 protein contains two extracellular Ig-like V-type domains, a transmembrane domain, and a short, two amino acid intracellular domain (3). The B7-H4 protein is shown to inhibit T cell activation, proliferation, and cytokine production (1,4,5). Although B7-H4 mRNA is widely expressed, B7-H4 protein is restricted to antigen presenting cells and B cells (1). The B7-H4 protein is also found in several tumor types, including ovarian cancer and breast cancer (6). Research studies indicate that B7-H4 protein is present on the surface of ovarian tumor cells, and that targeted inhibition of B7-H4 using recombinant antibodies restores T cell activation pathways. These studies suggest some potential therapeutic value in blocking B7-H4 function and restoring T cell function in cancer patients (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: The transcription regulator BTB and CNC homolog 2 (BACH2) is a bZIP domain-containing transcriptional repressor that dimerizes with MafK and binds Maf recognition elements (MAREs) to regulate transcription (1,2). BACH2 is part of a network of transcription factors that controls the transition of activated B cells into either antibody-producing plasma cells or memory B cells (3-5). Plasma cell differentiation requires the transcription factor Blimp1 (6). BACH2 suppresses expression of Blimp1 in activated B cells, which delays plasma cell differentiation and allows time for class switch recombination and somatic hypermutation (3-5). Genome-wide association studies have linked the genetic locus containing BACH2 to several immune-related disorders including type 1 diabetes, celiac disease, Crohn’s disease, and the skin condition known as vitiligo (7-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: BAFF, a member of the TNF superfamily of proteins, is a homotrimeric transmembrane protein, which is cleaved to produce a soluble cytokine (1). BAFF may also further oligomerize into 60-mer structures (1). BAFF is expressed by monocytes, neutrophils, macrophages, dendritic cells, activated T cells, and epithelial cells (1,2). BAFF plays a key role in B cell development, survival, and activation (1,3,4). BAFF binds to three distinct receptors, BAFF-R, TACI, and BCMA (1). These receptors are differentially expressed during B cell development and among B cell subsets (1,2,4). While BAFF-R and BCMA bind to the homotrimeric form of BAFF, TACI only binds to membrane bound or higher order BAFF structures (1). The BAFF/ BAFF-R interaction activates both canonical and non-canonical NF-κB pathways, PI3K/Akt, and mTOR (2,4). Activation of the noncanonical NF-κB pathway via BAFF-R is negatively regulated by TRAF3 (5). Research studies have shown that elevated levels of BAFF may exacerbate many autoimmune disorders, making it a potential therapeutic target (2).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Basigin (EMMPRIN, CD147) is a type I integral membrane receptor protein belonging to the immunoglobulin superfamily (1). Basigin is a glycosylated protein with four known isoforms, of which isoform 2 is the most abundantly expressed (2). Multiple functions have been ascribed to Basigin; foremost among these is stimulating the secretion of extracellular matrix metalloproteinases by adjacent fibroblasts, a function which has been implicated in promoting tumor progression (2-4). Research studies have shown that Basigin is overexpressed by many tumor cells, and its expression level may correlate with tumor malignancy (5,6). A recent study identified the BASIGIN gene as a regulatory target of Slug, suggesting a role for Basigin in the process of epithelial-mesenchymal transition (7). Basigin has also been identified as a marker for a subset of highly suppressive regulatory T cells (8), and as an obligate receptor for the malarial parasite Plasmodium falciparum on human erythrocytes (9).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated BATF (D7C5) Rabbit mAb #8638.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Basic leucine zipper transcriptional factor ATF-like (BATF) is a basic leucine zipper (bZIP) transcription factor and is part of the AP-1/ATF family that forms inhibitory dimers with members of the Jun family (1-3). Expression of BATF is largely restricted with highest levels found in mature T cells, and it is induced in B cells following immune responses including viral infection (1,2). BATF expression is also induced by IL-6 via a Stat3-dependent mechanism (4). BATF plays an important role in the differentiation of immune cell lineages (5-7). Studies of BATF-deficient mice have demonstrated a critical role for BATF in the formation of IL-17-expressing Th17 cells, in part, by regulating the expression of IL-17 (5,6). BATF knockouts are resistant to experimental autoimmune encephalomyelitis (EEA), consistent with the role of Th17 cells in this model for autoimmunity (5). Additional studies have found that BATF is important in generating antibody class switching. BATF is required for the generation of follicular helper T cells (Tfh), by regulating BCL6 and c-Maf (6,7). In B cells, BATF controls the expression of activation-induced cytidine deaminase (AID) and regulates class-switched antibody responses (7). Taken together, these studies suggest that BATF is a key regulator of distinct populations of immune cells.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Basic leucine zipper transcriptional factor ATF-like (BATF) is a basic leucine zipper (bZIP) transcription factor and is part of the AP-1/ATF family that forms inhibitory dimers with members of the Jun family (1-3). Expression of BATF is largely restricted with highest levels found in mature T cells, and it is induced in B cells following immune responses including viral infection (1,2). BATF expression is also induced by IL-6 via a Stat3-dependent mechanism (4). BATF plays an important role in the differentiation of immune cell lineages (5-7). Studies of BATF-deficient mice have demonstrated a critical role for BATF in the formation of IL-17-expressing Th17 cells, in part, by regulating the expression of IL-17 (5,6). BATF knockouts are resistant to experimental autoimmune encephalomyelitis (EEA), consistent with the role of Th17 cells in this model for autoimmunity (5). Additional studies have found that BATF is important in generating antibody class switching. BATF is required for the generation of follicular helper T cells (Tfh), by regulating BCL6 and c-Maf (6,7). In B cells, BATF controls the expression of activation-induced cytidine deaminase (AID) and regulates class-switched antibody responses (7). Taken together, these studies suggest that BATF is a key regulator of distinct populations of immune cells.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Bcl10/CIPER/CLAP/mE10 is a widely expressed CARD (caspase recruitment domain) containing protein shown to induce apoptosis and activate NF-κB (1-5). The CARD domain mediates self-oligomerization, interactions with other CARD proteins and is necessary for NF-κB activation, although the precise mechanism which Bcl10 regulates these processes is not fully understood. The discovery of Bcl10 came from observations of the chromosomal translocation t(1;14)(p22;q32) from B cell lymphomas of the mucosa-associated lymphoid tissue (MALT) (1,5). This translocation results in deregulated expression of a truncated form of Bcl10 which lacks apoptotic activity and enhances transformation. Studies from Bcl10 deficient mice demonstrate that Bcl10 is essential for the activation of NF-κB by T- and B-cell receptors (6). One third of Bcl10 deficient mice developed lethal exencephaly. Surviving mice were unaffected by various apoptotic stimuli, but were severely immunodeficient and defective in antigen receptor-induced NF-κB activiation. PKC or T-cell receptor signaling results in a downregulation of Bcl10 protein levels, attenuating both NF-κB activation and cellular proliferation and also provides a negative feedback regulation of the NF-κB signaling to T cell signaling (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: BCL11A is a zinc finger-containing transcriptional repressor that is important for normal hematopoiesis (1). Alternative splicing of the BCL11A transcript results in several isoforms of the protein (2). BCL11A is required for the early stages of B lineage commitment and mice lacking BCL11A fail to develop B cells (1). Mice deficient in BCL11A also fail to develop plasmacytoid dendritic cells (3). In addition, BCL11A regulates the switch from fetal to adult hemoglobin by repressing expression of fetal hemoglobin in adult erythroid cells (4). Since expression of fetal hemoglobin can decrease the severity of hemoglobin disorders in adults, BCL11A is a potential therapeutic target for these diseases (4). BCL11A was also recently identified as a component of the mammalian SWI/SNF complex (5). BCL11A is required for morphogenesis and terminal differentiation of dorsal spinal neurons (6).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated BCL6 (D4I2V) XP® Rabbit mAb #14895.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Chromosomal translocations result in misregulation of the proto-oncogene BCL6 in patients with B cell-derived non-Hodgkin's lymphoma (1). The BCL6 gene is selectively expressed in mature B cells and encodes a nuclear phosphoprotein that belongs to the BTB/POZ zinc finger family of transcription factors (2,3). BCL6 protein can bind to target DNA sequences of Stat6 and, analogous to Stat6, modulate the expression of interleukin-4-induced genes (4). Furthermore, BCL6 restrains p53-dependent senescence, making BCL6-active tumors functionally p53-negative (5). The mitogen-activated protein kinases, Erk1 and Erk2, but not JNK, phosphorylate BCL6 at multiple sites. Phosphorylation of BCL6 at Ser333 and Ser343 results in degradation of BCL6 by the ubiquitin/proteasome pathway in B cells (6,7). In addition, BCL6 is acetylated and its transcriptional repressor function is inhibited by the transcriptional co-activator p300 (8).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated BCL6 (D4I2V) XP® Rabbit mAb #14895.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Chromosomal translocations result in misregulation of the proto-oncogene BCL6 in patients with B cell-derived non-Hodgkin's lymphoma (1). The BCL6 gene is selectively expressed in mature B cells and encodes a nuclear phosphoprotein that belongs to the BTB/POZ zinc finger family of transcription factors (2,3). BCL6 protein can bind to target DNA sequences of Stat6 and, analogous to Stat6, modulate the expression of interleukin-4-induced genes (4). Furthermore, BCL6 restrains p53-dependent senescence, making BCL6-active tumors functionally p53-negative (5). The mitogen-activated protein kinases, Erk1 and Erk2, but not JNK, phosphorylate BCL6 at multiple sites. Phosphorylation of BCL6 at Ser333 and Ser343 results in degradation of BCL6 by the ubiquitin/proteasome pathway in B cells (6,7). In addition, BCL6 is acetylated and its transcriptional repressor function is inhibited by the transcriptional co-activator p300 (8).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated BCL6 (D4I2V) XP® Rabbit mAb #14895.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Chromosomal translocations result in misregulation of the proto-oncogene BCL6 in patients with B cell-derived non-Hodgkin's lymphoma (1). The BCL6 gene is selectively expressed in mature B cells and encodes a nuclear phosphoprotein that belongs to the BTB/POZ zinc finger family of transcription factors (2,3). BCL6 protein can bind to target DNA sequences of Stat6 and, analogous to Stat6, modulate the expression of interleukin-4-induced genes (4). Furthermore, BCL6 restrains p53-dependent senescence, making BCL6-active tumors functionally p53-negative (5). The mitogen-activated protein kinases, Erk1 and Erk2, but not JNK, phosphorylate BCL6 at multiple sites. Phosphorylation of BCL6 at Ser333 and Ser343 results in degradation of BCL6 by the ubiquitin/proteasome pathway in B cells (6,7). In addition, BCL6 is acetylated and its transcriptional repressor function is inhibited by the transcriptional co-activator p300 (8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Chromosomal translocations result in misregulation of the proto-oncogene BCL6 in patients with B cell-derived non-Hodgkin's lymphoma (1). The BCL6 gene is selectively expressed in mature B cells and encodes a nuclear phosphoprotein that belongs to the BTB/POZ zinc finger family of transcription factors (2,3). BCL6 protein can bind to target DNA sequences of Stat6 and, analogous to Stat6, modulate the expression of interleukin-4-induced genes (4). Furthermore, BCL6 restrains p53-dependent senescence, making BCL6-active tumors functionally p53-negative (5). The mitogen-activated protein kinases, Erk1 and Erk2, but not JNK, phosphorylate BCL6 at multiple sites. Phosphorylation of BCL6 at Ser333 and Ser343 results in degradation of BCL6 by the ubiquitin/proteasome pathway in B cells (6,7). In addition, BCL6 is acetylated and its transcriptional repressor function is inhibited by the transcriptional co-activator p300 (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: Chromosomal translocations result in misregulation of the proto-oncogene BCL6 in patients with B cell-derived non-Hodgkin's lymphoma (1). The BCL6 gene is selectively expressed in mature B cells and encodes a nuclear phosphoprotein that belongs to the BTB/POZ zinc finger family of transcription factors (2,3). BCL6 protein can bind to target DNA sequences of Stat6 and, analogous to Stat6, modulate the expression of interleukin-4-induced genes (4). Furthermore, BCL6 restrains p53-dependent senescence, making BCL6-active tumors functionally p53-negative (5). The mitogen-activated protein kinases, Erk1 and Erk2, but not JNK, phosphorylate BCL6 at multiple sites. Phosphorylation of BCL6 at Ser333 and Ser343 results in degradation of BCL6 by the ubiquitin/proteasome pathway in B cells (6,7). In addition, BCL6 is acetylated and its transcriptional repressor function is inhibited by the transcriptional co-activator p300 (8).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin)

Background: Chromosomal translocations result in misregulation of the proto-oncogene BCL6 in patients with B cell-derived non-Hodgkin's lymphoma (1). The BCL6 gene is selectively expressed in mature B cells and encodes a nuclear phosphoprotein that belongs to the BTB/POZ zinc finger family of transcription factors (2,3). BCL6 protein can bind to target DNA sequences of Stat6 and, analogous to Stat6, modulate the expression of interleukin-4-induced genes (4). Furthermore, BCL6 restrains p53-dependent senescence, making BCL6-active tumors functionally p53-negative (5). The mitogen-activated protein kinases, Erk1 and Erk2, but not JNK, phosphorylate BCL6 at multiple sites. Phosphorylation of BCL6 at Ser333 and Ser343 results in degradation of BCL6 by the ubiquitin/proteasome pathway in B cells (6,7). In addition, BCL6 is acetylated and its transcriptional repressor function is inhibited by the transcriptional co-activator p300 (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Blimp-1 (B lymphocyte-induced maturation protein) is a nuclear zinc-finger containing transcriptional repressor that is considered a master regulator of terminal B-cell development (1). The human homolog, PRDI-BF1, was identified by its ability to bind to the PRDI element on the IFN-β promoter and can inhibit virus-mediated IFN-β production (2). Expression of Blimp-1 is sufficient to drive terminal differentiation of BCL1 lymphoma cells into antibody secreting plasma cells, increasing the expression of the cell surface marker Syndecan-1 (1). In the B-cell lineage, Blimp-1 is specifically expressed in antibody-secreting cells including activated B and plasma cells. In addition, Blimp-1 has been found during macrophage differentiation (3) and in a subset of T-cells (4,5) suggesting it may play a wider role in homeostasis and differentiation (6). Mechanistically, Blimp-1 is thought to act by recruiting chromatin-modifying enzymes including histone deacetylases (7) and methyltransferases (8,9). Target genes of Blimp-1 transcriptional repression with potential roles in differentiation include c-Myc (10), CIITA (11), Pax5 (12), Spi-B, and Id3 (13).