Microsize antibodies for $99 | Learn More >>

Product listing: CD19 Antibody, UniProt ID P15391 #3574 to Gasdermin D Antibody, UniProt ID P57764 #96458

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: CD19 is a 95 kDa coreceptor, which amplifies the signaling cascade in B cells (1). On the B cell surface, CD19 associates with CD21, CD81 and Leu-13 to exert its function. The cytoplasmic tail of CD19 has nine conserved tyrosine residues playing critical roles in CD19 mediated function by coupling signaling molecules to the receptor (1). After B cell receptor or CD19 ligation, Tyr531 and Tyr500 of CD19 are progressively phosphorylated. This phosphorylation enables the coupling of PI3 kinase and Src family tyrosine kinase to CD19 and activates the PI3K and Src signaling pathways (2,3). Coligation of B cell receptor and CD19 also promotes Tyr409 phosphorylation in CD19. The phosphorylation at these sites enables its binding to Vav and mediates elevated intracellular calcium response, as well as the JNK pathway (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Frozen), Western Blotting

Background: B-lymphocyte antigen CD20 (also known as MS4A1; Membrane-spanning 4-domains subfamily A member 1) is a cell surface phosphoprotein involved in the regulation of B cell activation and proliferation (1,2). It is commonly used as a marker to identify B cells and is expressed throughout B cell development, up until their differentiation into plasma cells. CD20 has no known ligand, and its expression and function are largely conserved between human and mouse (1-3). Evidence suggests that CD20 is necessary for store operated calcium (SOC) entry, which leads to elevated cytoplasmic calcium levels required for B cell activation (4-5). Anti-CD20 antibody immunotherapy depletes B cells by activation of the innate monocytic network and is a common treatment for B cell lymphomas, leukemias, and autoimmune diseases (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Cyclic ADP-ribose hydrolase 1 (CD38) is a transmembrane protein involved in several important biological processes, including immune response, insulin secretion, and social behavior. Originally described as a glycosylated immune cell surface marker, additional research determined that CD38 is a multifunctional enzyme that catalyzes the synthesis and hydrolysis of cyclic ADP ribose (cADPR) from NAD (1,2). Under acidic conditions, CD38 also catalyzes the synthesis of nicotinic acid adenine dinucleotide phosphate (NAADP) from NADP+. Both cADPR and NAADP act as calcium ion mobilizing messengers that target different intracellular Ca2+ stores (3-6). Since CD38 is the primary mammalian NAD+ glycohydrolase responsible for NAD+ metabolism, CD38 may be a valuable therapeutic target for treatment of metabolic diseases regulated by NAD+-dependent pathways (7,8). CD38 has also been considered a possible therapeutic target for antibody-mediated therapy for myeloma and chronic lymphocytic leukemia (9-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD44 is a type I transmembrane glycoprotein that mediates cell-cell and cell-matrix interaction through its affinity for hyaluronic acid (HA) and possibly through other parts of the extracellular matrix (ECM). CD44 is highly polymorphic, possesses a number of alternative splice variants and undergoes extensive post-translational modifications (1,2). Increased surface levels of CD44 are characteristic of T cell activation, and expression of the protein is upregulated during the inflammatory response. Research studies have shown that interactions between CD44 and HER2 are linked to an increase in ovarian carcinoma cell growth (1-3). CD44 interacts with ezrin, radixin and moesin (ERM), linking the actin cytoskeleton to the plasma membrane and the ECM (4-6). CD44 is constitutively phosphorylated at Ser325 in resting cells. Activation of PKC results in phosphorylation of Ser291, dephosphorylation of Ser325, disassociation of ezrin from CD44, and directional motility (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD59 is a GPI-anchored membrane protein that functions as inhibitor of the complement membrane attack complex (MAC). CD59 binds to complement components C8 and C9, preventing C9 polymerization and insertion into membranes, therefore inhibiting the complement-dependent cytolysis (CDC) (1). CD59 is a ubiquitously expressed cell membrane protein that protects cells from CDC. Rare cases of CD59 deficiency have been reported to cause paroxysmal nocturnal hemoglobinuria in human patients (2,3). Expression of CD59 on tumor cells and viral infected cells makes them resist antibody-dependent complement-mediated lysis. Potent inhibitors for CD59 have been actively pursued for therapeutic applications (4,5). In addition, CD59 may regulate insulin secretion by modulating exocytosis (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD7 is a type-I transmembrane glycoprotein belonging to the immunoglobulin superfamily. CD7 is one of the earliest surface markers to be expressed on the surface of developing T cells and its expression is maintained throughout maturation of multiple T cell subsets and NK cells (1-3). Engagement of CD7 through binding its ligand, SECTM1, has been shown to promote tyrosine phosphorylation of its cytoplasmic domain, recruitment of PI3K, and delivery of costimulatory signals for T cell activation (4-6). While CD7 is expressed on normal T cells, it is also highly expressed in a variety of T cell malignancies, which has poised it as a potential target of immunotherapy (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CD70 is a type II transmembrane glycoprotein and a member of the tumor necrosis factor ligand superfamily (TNFSF), also known as CD27L and TNFSF7. It is normally expressed on the medullary thymic epithelial cells. Its expression is induced on activated lymphoid cells (B cells, T cells, and NK cells) and dendritic cells. CD70 is a ligand for CD27, a co-stimulatory receptor that plays an important role in T cell activation and proliferation (1,2). CD70 overexpression has been reported in various tumors such as renal cell carcinoma, glioblastoma, and non-small cell lung carcinoma and it’s being actively pursued as a therapeutic target (3-6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Antigen receptors found on the surface of B cells contain a heterodimeric signaling component composed of CD79A and CD79B, also known as Ig α and Ig β, respectively (1,2). Presence of this receptor complex is essential for B-cell development and function (3). Together these two proteins and the associated B cell receptor initiate intracellular signaling following antigen binding (4,5). An immunoreceptor tyrosine-based activation motif (ITAM) found in the CD79A intracellular region appears to be important for its function (6). Antigen binding precedes formation of the CD79A and CD79B heterodimer and subsequent activation of receptor associated kinases (7). Research has shown that CD79A is a marker for B-lineage lymphoblastic leukemia (8). Additionally, investigators have found that mutations in the CD79A (MB1) gene are associated with abnormally low levels of functional B cell receptors in some cases of chronic B cell lymphocytic leukemia (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: CD99 is a transmembrane protein involved in many cellular functions, including cell adhesion and migration, endocytosis and exocytosis, and intracellular protein trafficking. It is highly expressed in all leukocyte lineages, Sertoli cells, granulosa cells, and pancreatic islet cells (1,2). Due to alternative splicing, there are two isoforms of CD99 that differ at the carboxy-terminus. CD99 Type I (CD99wt) is the full-length form containing 185 amino acids and CD99 Type II (CD99sh) contains 161 amino acids. Their expression is differentially regulated and they may have opposite functions in different contexts (3,4). CD99 is expressed in many types of tumors and has been used for differential diagnosis of conventional Ewing sarcoma. It has been actively pursued as a therapeutic target (5,6). On the other hand, CD99 may also play a tumor suppressor role in other tumors, such as Hodgkin’s lymphomas, osteosarcomas, and pancreatic tumors (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: MHC class II (MHC-II) proteins play critical roles in cellular immune responses and their expression is mainly regulated by the non-DNA binding transcription factor CIITA (MHC class II transactivator) (1,2). CIITA expression is upregulated by IFN-γ and it in turn enchances MHC-II expression and represses collagen expression (3,4). CIITA has a limited number of transcriptional targets, most of which are involved in MHC-mediated antigen presentation (5). Mutations in the CIITA are associated with the hereditary immunodeficiency disease Bare Lymphocyte Syndrome (BLS) which is characterized by a nearly complete absence of MHC-II expression (also referred to as MHC-II deficiency) (6,7).

$303
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Interleukin-1β (IL-1β), one of the major caspase-1 targets, is a multifunctional cytokine that is involved in a host of immune and proinflammatory responses (1). It is produced primarily by activated monocytes and macrophages. It signals through various adaptor proteins and kinases that lead to activation of numerous downstream targets (2-6). Human IL-1β is synthesized as a 31 kDa precursor. To gain activity, the precursor must be cleaved by caspase-1 between Asp116 and Ala117 to yield a 17 kDa mature form (7,8). Detection of the 17 kDa mature form of IL-1β is a good indicator of caspase-1 activity.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: CKLF-like MARVEL transmembrane domain-containing protein 4 (CMTM4) is a member of the chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (1). CMTM4 acts as a tumor suppressor in various malignancies, and regulates cell growth and transition through the cell cycle in HeLa cells (1-4). CMTM4 plays an important role in angiogenesis, enabling internalization of membrane-bound vascular endothelial cadherin at adherens junctions, mediating endothelial barrier function, and controlling vascular sprouting (5). In the immune system, CMTM4 acts as a backup for CMTM6 to regulate plasma membrane expression of PD-L1, an immune inhibitory ligand critical for immune tolerance to self and anti-tumor immunity (6-8). CMTM4 may also protect PD-L1 from being polyubiquitinated and targeted for degradation (8). Due to the roles of CMTM4 in the immune system and as a tumor suppressor, it is being investigated as a therapeutic target for the treatment of cancer.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: CKLF-like MARVEL transmembrane domain-containing protein 6 (CMTM6) is a member of the chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (1). CMTM6 stabilizes plasma membrane expression of PD-L1, an immune inhibitory ligand critical for immune tolerance to self and anti-tumor immunity (2,3). CMTM6 associates with PD-L1 at recycling endosomes, where it protects PD-L1 from being targeted for lysosomal degradation by preventing STUB1-mediated PD-L1 ubiquitination (2,3). CMTM6 may stabilize PD-L1 expression on antigen presenting cells and potentiate inhibitory signaling by PD-1 on T cells, triggering T cell inhibition and exhaustion. CMTM6 has also been shown to interact with with CD58, ARG1, ENO1, and TMPO (2). Due to the role of CMTM6 in regulating the immune system, it is being investigated as an immunotherapeutic target for the treatment of cancer.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Western Blotting

Background: Cyclooxygenase1 (Cox1) and cyclooxygenase2 (Cox2), family members with 60% homology in humans, catalyze prostaglandin production from arachidonic acid (1,2). While Cox1 expression is constitutive in most tissues, Cox2 expression is induced by lipopolysaccharide (LPS) and peptidoglycan (PGN) (3). PGN activates Ras, leading to phosphorylation of Raf at Ser338 and Erk1/2 at Tyr204. The activation of MAP kinase signaling results in subsequent activation of IKKα/β, phosphorylation of IκBα at Ser32/36, and NF-κB activation. Finally, activation of the transcription factor NF-κB is responsible for the induction of Cox2 expression (4). Investigators have shown that LPS and PGN induce the clinical manifestations of arthritis and bacterial infections, such as inflammation, fever, and septic shock (5). Research studies have indicated that Cox1 and Cox2 may also play a role in the neuropathology of Alzheimer's disease by potentiating γ-secretase activity and β-amyloid generation (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Cyclooxygenase1 (Cox1) and cyclooxygenase2 (Cox2), family members with 60% homology in humans, catalyze prostaglandin production from arachidonic acid (1,2). While Cox1 expression is constitutive in most tissues, Cox2 expression is induced by lipopolysaccharide (LPS) and peptidoglycan (PGN) (3). PGN activates Ras, leading to phosphorylation of Raf at Ser338 and Erk1/2 at Tyr204. The activation of MAP kinase signaling results in subsequent activation of IKKα/β, phosphorylation of IκBα at Ser32/36, and NF-κB activation. Finally, activation of the transcription factor NF-κB is responsible for the induction of Cox2 expression (4). Investigators have shown that LPS and PGN induce the clinical manifestations of arthritis and bacterial infections, such as inflammation, fever, and septic shock (5). Research studies have indicated that Cox1 and Cox2 may also play a role in the neuropathology of Alzheimer's disease by potentiating γ-secretase activity and β-amyloid generation (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Complement receptor type 2 (CR2/CD21) is a type 1 transmembrane glycoprotein whose expression is largely restricted to B lymphocytes and follicular dendritic cells (1,2). Research studies have shown that CR2/CD21 functions to bind the complement fragments iC3b, C3dg, and C3d, which function to activate the alternative complement pathway and MAC formation (3,4). In addition to its function as a complement receptor, CR2/CD21 also functions as the B-lymphocyte receptor for Epstein-Barr virus (5) and interferon alpha (6). Research studies have also shown that CR2/CD21 participates in B-cell activation, proliferation, and protection from apoptosis through its association with components of the B-cell coreceptor signaling complex such as CD19 and CD21 (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Cyclophilins are a highly conserved family of peptidylprolyl cis-trans-isomerases (PPIA) that are targets of the immunosuppressant drug cyclosporin A (CsA) (1,2). The complex of cyclophilin and CsA can bind to and inhibit calcineurin which leads to inhibition of the transcription factor NFAT and decreased production of cytokines (3,4). As isomerases, cyclophilins have been proposed to aid in protein folding. Cyclophilin A can bind to the p55 Gag protein of HIV and appears necessary for HIV infection (5,6). There is also some evidence that cyclophilins have nuclease activity and play a role in apoptosis (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mink, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The common beta-chain (beta-c) of the granulocyte macrophage colony-stimulating factor (GM-CSF), interleukin-3 (IL-3) and IL-5 receptors is the major signaling subunit of these receptors, coupling ligand binding to multiple biological activities (1-3). Tyrosine phosphorylation of cytokine receptor common beta-chain is one of the first events in GM-CSF, IL-3 and IL-5 receptor activation and in signaling initiation (4). Serine phosphorylation within the 14-3-3 binding sequence of the common beta-chain is also involved in GM-CSF, IL-3 and IL-5 receptor-specific functions (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Decay-accelerating factor (DAF/CD55) is a GPI-linked plasma membrane glycoprotein normally expressed on the surface of vascular endothelial and hematopoietic cells, which are continuously exposed to autologous complement components. In conjunction with other membrane complement regulatory proteins (CD35, CD46, and CD59), DAF/CD55 protects healthy cells from inappropriate complement-mediated lysis (1). DAF/CD55 inhibits activation of the complement cascade by promoting membrane dissociation and inactivation of C3 convertase, which inhibits amplification of the classical and alternative complement cascades (2). Research studies have demonstrated that DAF/CD55 is overexpressed in a variety of solid and liquid tumors, which functions to protect tumor cells from complement-mediated attack (3,4). Given its ability to disable the complement cascade and facilitate immune evasion by tumor cells, DAF/CD55 has received attention as a potential therapeutic target for the treatment of human malignancies. CD55 deficiency is also linked to human disease. The inability to express CD55 on the surface of erythrocytes renders them highly susceptible to complement-mediated lysis, which contributes to the development of paroxymal noctural hemoglobinuria (PNH). PNH is characterized by hemolytic anaemia, pancytopenia, and venous thrombosis (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: E2A is a member of the E-protein family of transcription factors, a subclass of basic helix-loop-helix (bHLH) proteins that bind specifically to E-box consensus sequences (1,2). Alternative splicing generates two E2A isoforms (E47 and E12) that are actively involved in B cell lineage commitment, B cell maturation, IgK V-J rearrangement, peripheral B cell development, and tumor suppression (3). E2A acts in cis during G1 to promote immunoglobulin gene diversification (4). Research studies have shown that chromosomal translocations involving the E2A gene result in the expression of multiple fusion proteins and are associated with many cases of pediatric acute lymphoblastic leukemia (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Ectonucleotide pyrophosphatase/phosphodiesterase 3 (ENPP3/CD203c/PD-Ιbeta) is a type-II transmembrane glycoprotein that contains a large extracellular domain, an α-helical transmembrane segment, and a short cytoplasmic domain containing the N-terminus. ENPP3 has been shown to be overexpressed in colon carcinoma and is thought to play a role in tumor initiation and tumor cell invasiveness (1-3). Within the hematopoietic cell compartment, ENPP3 is a cell surface marker of basophil and mast cell lineages (4,5). Indeed, ENPP3 is overexpressed on transformed mast cells in patients with systemic mastocytosis (6). Recently, ENPP3 has been identified as being highly overexpressed in renal cell carcinoma (RCC) and may have potential as a novel therapeutic target for this disease (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: ERC1, an acronym named for previous protein names ELKS (1), RAB6IP2 (2) and CAST (3), is a RIM-binding protein that plays a role in neurotransmitter release and general membrane trafficking in other cell types (2-5). Interaction with the GTP-binding protein Rab6 suggests that it contributes to membrane traffic at the Golgi (2). In addition to its association with membrane trafficking, ERC1 has also been found as an essential part of the IκB kinase (IKK) complex required for the activation of NF-κB, perhaps by recruiting IκBα to the IKK complex (6). Alternative splicing of ERC1 generates 2 proteins with a divergent carboxy terminus, a long and a short form termed ERC1α and ERC1β, respectively. ERC1α is widely expressed, whereas ERC1β and a related family member ERC2 are expressed in the brain (4). Papillary thyroid carcinomas have been identified with the translocation t(10;12)(p11;p13) resulting in a fusion between ERC1 and the receptor tyrosine kinase Ret (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: ERC1, an acronym named for previous protein names ELKS (1), RAB6IP2 (2) and CAST (3), is a RIM-binding protein that plays a role in neurotransmitter release and general membrane trafficking in other cell types (2-5). Interaction with the GTP-binding protein Rab6 suggests that it contributes to membrane traffic at the Golgi (2). In addition to its association with membrane trafficking, ERC1 has also been found as an essential part of the IκB kinase (IKK) complex required for the activation of NF-κB, perhaps by recruiting IκBα to the IKK complex (6). Alternative splicing of ERC1 generates 2 proteins with a divergent carboxy terminus, a long and a short form termed ERC1α and ERC1β, respectively. ERC1α is widely expressed, whereas ERC1β and a related family member ERC2 are expressed in the brain (4). Papillary thyroid carcinomas have been identified with the translocation t(10;12)(p11;p13) resulting in a fusion between ERC1 and the receptor tyrosine kinase Ret (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: ETO belongs to a family of evolutionarily conserved nuclear factors. Although it has no DNA binding domains it is reported to act as a transcriptional corepressor (1). It is best characterized as the fusion partner of AML1 in acute myeloid leukemia with the t(8;21) translocation which gives rise to the AML-ETO fusion protein (2). AML1 is a transcription factor that is involved in the differentiation of all hematopoietic lineages. The fusion protein lacks the activation domain of AML1 and behaves as a dominant negative AML1, repressing AML1 target genes. AML-ETO also causes activation of other genes through a mechanism that involves Bcl-2 and enhanced expression of p21 waf1/cip1 (3,4). The AML-ETO fusion protein is thought to cause the expansion of a hematopoietic stem cell population that has limited lineage commitment and genomic instability (5). Recent evidence derived from chromatin immunoprecipitation (ChIP) experiments has demonstrated that ETO may play a role in the regulation of Notch target genes, and AML-ETO has been shown to disrupt repression of Notch target genes (6). Therefore, both AML and Notch target genes are deregulated by AML-ETO. Epigenetic silencing of the microRNA-223 gene has also been attributed to activities of AML-ETO, contributing to the differentiation block in t(8;21) leukemia (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Evi-1 (Ecotropic virus integration site 1) was originally identified as a common site of viral integration in murine myeloid leukemia. It is involved in human myeloid disorders through chromosome translocation and inversion (1) and is also implicated in solid tumor formation (2). Evi-1 is a zinc finger transcription factor which also plays an important role in animal development (3). It has many isoforms due to alternative usage of 5'-ends (4), alternative splicing (5), and intergenic splicing which results in the formation of a fusion protein with MDS1 in normal tissues (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: Fgr is a member of the Src tyrosine kinase family. It has a membrane-associated amino-terminal domain that is highly divergent from other family members, internal conserved SH2 and SH3 domains and a highly conserved carboxy-terminal tyrosine kinase catalytic domain (1,2). Tyrosine 412 is located in the activation loop, and phosphorylation of this residue is critical for the activation of Fgr tyrosine kinase activity. c-Fgr is predominantly expressed in cells of hematopoietic origin including differentiated myeloid cells, NK and B cells (3,4). Fgr plays an important role in the signaling cascade from membrane receptors lacking intrinsic tyrosine kinase activity such as Bcr, FcR, and the integrin family of receptors (5). It was demonstrated that Fgr functions as a selective inhibitor of beta2 integrin-mediated signaling and Syk kinase function in monocytes (5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Galectins are a family of β-galactose binding proteins that are characterized by their affinity for poly-N-acetyllactosamine-enriched glycoconjugates and their carbohydrate-binding site (1,2). Members of the galectin family have been implicated in a variety of biological functions including cell adhesion (3), growth regulation (4), cytokine production (5), T cell apoptosis (6), and immune responses (7). Galectin-1/LGALS1 has been shown to be expressed in a wide range of tissues and cell types. The level and pattern of expression of galectin-1 have been shown to change during development (8). In addition to a role in developmental processes, galectin-1 has been shown to be involved in central immune tolerance and may function in tumorigenesis by modulating the immune response to the tumor (9,10). Research studies have shown that galectin-1 expression is increased in several human cancers, suggesting a correlation with metastatic potential (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Galectins are a family of β-galactose binding proteins that are characterized by an affinity for poly-N-acetyllactosamine-enriched glycoconjugates and a carbohydrate-binding site (1,2). Members of the galectin family have been implicated in a variety of biological functions including cell adhesion (3), growth regulation (4), cytokine production (5), T-cell apoptosis (6), and immune responses (7).Galectin-3/LGALS3 is involved in several diverse biological functions. Galectin-3/LGALS3 binds IgE (8). Galectin-3/LGALS3 is an unusual protein in that can be found both extracellularly and intracellularly. Intracellularly, galectin-3/LGALS3 can localize to the cytoplasm, nucleus, or both, depending on cell type and experimental conditions. Nuclear galectin-3/LGALS3 has been identified as a pre-mRNA splicing factor (9). Galectin-3/LGALS3 production has been shown to increase during inflammation and in obesity, and the protein itself can have an inflammatory effect under certain conditions (10). Galectin-3/LGALS3 forms a complex with α3, β1 integrin to act as a surface receptor on endothelial cells for the NG2 proteoglycan, which triggers cell motility and angiogenesis (11). In addition to these functions, galectin-3/LGALS3 is also a required factor for the terminal differentiation of epithelial cells (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Gasdermin D (GSDMD), a member of the gasdermin family that includes GSDMA, GSDMB, and GSMDC, has been reported to have a critical role as a downstream effector of pyroptosis (1,2). Pyroptosis is a lytic type of cell death triggered by inflammasomes, multiprotein complexes assembled in response to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) that result in the activation of caspase-1 and subsequent cleavage of pro-inflammatory cytokines IL-1β and IL-18 (3). Gasdermin D was identified by two independent groups as a substrate of inflammatory caspases, caspase-1 and caspase-11/4/5, producing two fragments: GSDMD-N and GSDMD-C. Cleavage results in release of an intramolecular inhibitory interaction between the N- and C-terminal domains, allowing the N-terminal fragment GSMDM-N to initiate pyroptosis through the formation of pores on the plasma membrane (4-7).