Microsize antibodies for $99 | Learn More >>

Product listing: BCKDH-E1α (E4T3D) Rabbit mAb, UniProt ID P12694 #90198 to CYP17A1 (E6Y3S) Rabbit mAb, UniProt ID P05093 #10443

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are essential amino acids in mammals, but elevated levels of BCAAs have been implicated in cardiovascular and metabolic disorders (1). The branched-chain α-keto acid dehydrogenase complex (BCKDH) catalyzes the rate-limiting step in the BCAA degradation pathway (2, 3). Branched-chain α-keto acid decarboxylase (BCKDH-E1) is one of three enzymatic components in this complex (3). The α subunit of BCKDH-E1 (BCKDH-E1α) is critical for the regulation of BCKDH. Phosphorylation of BCKDH-E1α was shown to play a key role in regulating the enzymatic activity of this complex (3-5).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated C/EBPα (D56F10) XP® Rabbit mAb #8178.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: CCAAT/enhancer-binding proteins (C/EBPs) are a family of transcription factors that are critical for cellular differentiation, terminal function, and inflammatory response (1). Six members of the family have been characterized (C/EBPα, β, δ, γ, ε, and ζ) and are distributed in a variety of tissues (1). Translation from alternative start codons results in two isoforms of C/EBPα (p42 and p30), which are both strong transcriptional activators (2). It has been reported that insulin and insulin-like growth factor-I stimulate the dephosphorylation of C/EBPα, which may play a key role in insulin-induced repression of GLUT4 transcription (3). Phosphorylation of C/EBPα at Thr222, Thr226, and Ser230 by GSK-3 seems to be required for adipogenesis (4).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: CCAAT/enhancer-binding proteins (C/EBPs) are a family of transcription factors that are critical for cellular differentiation, terminal function, and inflammatory response (1). Six members of the family have been characterized (C/EBPα, β, δ, γ, ε, and ζ) and are distributed in a variety of tissues (1). Translation from alternative start codons results in two isoforms of C/EBPα (p42 and p30), which are both strong transcriptional activators (2). It has been reported that insulin and insulin-like growth factor-I stimulate the dephosphorylation of C/EBPα, which may play a key role in insulin-induced repression of GLUT4 transcription (3). Phosphorylation of C/EBPα at Thr222, Thr226, and Ser230 by GSK-3 seems to be required for adipogenesis (4).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: C1QBP, also referred to as p32, p33, gC1q receptor (gC1qR), and hyaluronic acid binding protein 1 (HABP1), was originally identified via its binding interactions with Splicing Factor (SF-2) (1). Multiple, diverse binding partners of C1QBP were subsequently identified, including the globular heads of complement component C1q, hyaluronic acid, selected protein kinases (2), the tumor suppressor ARF (3-5), and multiple antigens of bacterial and viral origin (6). Research studies have shown that C1QBP is overexpressed in a number of cancer cell types (7), and has been implicated in the Warburg effect, whereby cancer cells shift their metabolism from oxidative phosphorylation to glycolysis (7). C1QBP has also been shown to inhibit the Mitochondrial Permeability Transition (MPT) pore, possibly serving a protective function against damage from oxidative stress (8).

$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunoprecipitation, Western Blotting

Background: Carbonic anhydrases (CA) are a family of ancient zinc metalloenzymes found in almost all living organisms. All CA can be divided into 3 distinct classes (α, β, and γ) that evolved independently and have no significant homology in sequence and overall folding. All functional CA catalyze the reversible hydration of CO2 into HCO3- and H+ and contain a zinc atom in the active sites essential for catalysis. There are many isoforms of CA in mammals and they all belong to the α class (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Carbonic anhydrases (CA) are a family of ancient zinc metalloenzymes found in almost all living organisms. All CA can be divided into 3 distinct classes (α, β, and γ) that evolved independently and have no significant homology in sequence and overall folding. All functional CA catalyze the reversible hydration of CO2 into HCO3- and H+ and contain a zinc atom in the active sites essential for catalysis. There are many isoforms of CA in mammals and they all belong to the α class (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Carbonic anhydrases (CA) are a family of ancient zinc metalloenzymes found in almost all living organisms. All CA can be divided into 3 distinct classes (α, β, and γ) that evolved independently and have no significant homology in sequence and overall folding. All functional CA catalyze the reversible hydration of CO2 into HCO3- and H+ and contain a zinc atom in the active sites essential for catalysis. There are many isoforms of CA in mammals and they all belong to the α class (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Carbonic anhydrases (CA) are a family of ancient zinc metalloenzymes found in almost all living organisms. All CA can be divided into 3 distinct classes (α, β, and γ) that evolved independently and have no significant homology in sequence and overall folding. All functional CA catalyze the reversible hydration of CO2 into HCO3- and H+ and contain a zinc atom in the active sites essential for catalysis. There are many isoforms of CA in mammals and they all belong to the α class (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: CAD is essential for the de novo synthesis of pyrimidine nucleotides and possesses the following enzymatic activities: glutamine amidotransferase, carbamoyl-phosphate synthetase, aspartate transcarbamoylase, and dihydroorotase. Thus, the enzyme converts glutamine to uridine monophosphate, a common precursor of all pyrimidine bases, and it is necessary for nucleic acid synthesis (1). In resting cells, CAD is localized mainly in the cytoplasm where it carries out pyrimidine synthesis. As proliferating cells enter S phase, MAP Kinase (Erk1/2) phosphorlyates CAD at Thr456, resulting in CAD translocation to the nucleus. As cells exit S phase, CAD is dephosphorylated at Thr456 and phosphorylated at Ser1406 by PKA, returning the pathway to basal activity (2). Various research studies have shown increased expression of CAD in several types of cancer, prompting the development of pharmacological inhibitors such as PALA. Further studies have identified CAD as a potential predictive early marker of prostate cancer relapse (3).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Catalase catalyzes the conversion of hydrogen peroxide to water and oxygen (1). Research studies show that overexpression of this antioxidant enzyme increases the ability of pancreatic β-cells to scavenge reactive oxygen species (ROS), thereby protecting pancreatic β-cells from oxidative stress (2). The pancreatic β-cells overexpressing this enzyme are also protected from hydrogen peroxide-mediated lipotoxicity, providing further evidence for the importance of catalase in the pathogenesis of diabetes (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Catalase catalyzes the conversion of hydrogen peroxide to water and oxygen (1). Research studies show that overexpression of this antioxidant enzyme increases the ability of pancreatic β-cells to scavenge reactive oxygen species (ROS), thereby protecting pancreatic β-cells from oxidative stress (2). The pancreatic β-cells overexpressing this enzyme are also protected from hydrogen peroxide-mediated lipotoxicity, providing further evidence for the importance of catalase in the pathogenesis of diabetes (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: CTP:phosphocholine cytidylyltransferase (CCT) is a critical enzyme that regulates the CDP-choline pathway for the biosynthesis of phosphatidylcholine. Three distinct CCT isoforms are found in mammals, including CCTα, CCTβ2, and CCTβ3 (1,2). CCTα is the major isoform that is expressed in most tissues (3). CCTα is essential in the synthesis and secretion of surfactant by alveolar epithelial cells and is important in maintaining the phosphatidylcholine level that regulates lipoprotein assembly and secretion in hepatocytes (4,5). CCTα is a major component in membrane biogenesis during cytokine secretion by stimulated macrophages (6). Monoubiquitination of CCTα prevents it from entering the nucleus and leads to its degradation by lysosome (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Iron-sulfur (Fe-S) clusters (ISC) are cofactors for many proteins that display a wide range of biological functions, such as DNA maintenance, transcription, translation, cellular metabolism, electron transport, and oxidative phosphorylation (1). While structurally simple, the synthesis and insertion of ISC into Fe-S proteins are complex processes that involve many different proteins. The cytosolic iron-sulfur assembly component 1 (CIAO1) protein is a key component of the cytosolic ISC assembly machinery that incorporates ISC into cytoplasmic and nuclear Fe-S proteins in eukaryotic cells (1,2). CIAO1, along with MMS19, XPD, FAM96B, and ANT2, comprise a complex that localizes to the mitotic spindle during mitosis, which suggests a role in chromosome segregation (3-6). The CIAO1 protein interacts with Wilms' tumor suppressor protein (WT1) and may affect its transactivation activity (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Iron-sulfur (Fe-S) clusters (ISC) are cofactors for many proteins that display a wide range of biological functions, such as DNA maintenance, transcription, translation, cellular metabolism, electron transport, and oxidative phosphorylation (1). While structurally simple, the synthesis and insertion of ISC into Fe-S proteins are complex processes that involve many different proteins. The cytosolic iron-sulfur assembly component 1 (CIAO1) protein is a key component of the cytosolic ISC assembly machinery that incorporates ISC into cytoplasmic and nuclear Fe-S proteins in eukaryotic cells (1,2). CIAO1, along with MMS19, XPD, FAM96B, and ANT2, comprise a complex that localizes to the mitotic spindle during mitosis, which suggests a role in chromosome segregation (3-6). The CIAO1 protein interacts with Wilms' tumor suppressor protein (WT1) and may affect its transactivation activity (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Citrate synthase (CS) is a mitochondrial enzyme that catalyzes the first and rate-limiting reaction of the citric acid cycle (1,2). The enzyme is responsible for the conversion of oxaloacetate and acetyl-CoA to citrate and CoA (1,2). Research studies show that CS knockdown HeLa cells are more malignant than vector-transfected cells from an in vivo xenograft model, which suggests a direct link between the Warburg Effect and tumor growth (2). Intervertebral disc degeneration, a growing health problem, has been linked to changes in citrate synthase activity (3). 

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Chloride intracellular channel (CLIC) proteins belong to a family of highly conserved transport proteins found as both soluble and membrane-bound forms (1). Although CLIC proteins have putative, selective chloride ion channel activity, they are structural homologs to members of the glutathione-S-transferase protein superfamily and are likewise regulated by redox status (2). CLIC proteins are distinct from other ion channels in that they are found as both soluble and integral membrane forms, and their form determines their function (3-6). Chloride intracellular channel proteins are ubiquitously expressed in numerous tissue types and are involved in diverse biological functions (1,2).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated COX IV (3E11) Rabbit mAb #4850.
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Pig, Rat, Zebrafish

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Cytochrome c oxidase (COX) is a hetero-oligomeric enzyme consisting of 13 subunits localized to the inner mitochondrial membrane (1-3). It is the terminal enzyme complex in the respiratory chain, catalyzing the reduction of molecular oxygen to water coupled to the translocation of protons across the mitochondrial inner membrane to drive ATP synthesis. The 3 largest subunits forming the catalytic core are encoded by mitochondrial DNA, while the other smaller subunits, including COX IV, are nuclear-encoded. Research studies have shown that deficiency in COX activity correlates with a number of human diseases (4). The COX IV antibody can be used effectively as a mitochondrial loading control in cell-based research assays.

$305
50 tests
100 µl
This Cell Signaling Technology (CST) antibody is conjugated to Alexa Fluor® 555 fluorescent dye under optimal conditions and tested in-house for direct immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated COX IV (3E11) Rabbit mAb #4850.
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Pig, Rat, Zebrafish

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Cytochrome c oxidase (COX) is a hetero-oligomeric enzyme consisting of 13 subunits localized to the inner mitochondrial membrane (1-3). It is the terminal enzyme complex in the respiratory chain, catalyzing the reduction of molecular oxygen to water coupled to the translocation of protons across the mitochondrial inner membrane to drive ATP synthesis. The 3 largest subunits forming the catalytic core are encoded by mitochondrial DNA, while the other smaller subunits, including COX IV, are nuclear-encoded. Research studies have shown that deficiency in COX activity correlates with a number of human diseases (4). The COX IV antibody can be used effectively as a mitochondrial loading control in cell-based research assays.

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 594 fluorescent dye and tested in-house for direct immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated COX IV (3E11) Rabbit mAb #4850.
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Pig, Rat, Zebrafish

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Cytochrome c oxidase (COX) is a hetero-oligomeric enzyme consisting of 13 subunits localized to the inner mitochondrial membrane (1-3). It is the terminal enzyme complex in the respiratory chain, catalyzing the reduction of molecular oxygen to water coupled to the translocation of protons across the mitochondrial inner membrane to drive ATP synthesis. The 3 largest subunits forming the catalytic core are encoded by mitochondrial DNA, while the other smaller subunits, including COX IV, are nuclear-encoded. Research studies have shown that deficiency in COX activity correlates with a number of human diseases (4). The COX IV antibody can be used effectively as a mitochondrial loading control in cell-based research assays.

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometric and immunofluorescent analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated COX IV (3E11) Rabbit mAb #4850.
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Pig, Rat, Zebrafish

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Cytochrome c oxidase (COX) is a hetero-oligomeric enzyme consisting of 13 subunits localized to the inner mitochondrial membrane (1-3). It is the terminal enzyme complex in the respiratory chain, catalyzing the reduction of molecular oxygen to water coupled to the translocation of protons across the mitochondrial inner membrane to drive ATP synthesis. The 3 largest subunits forming the catalytic core are encoded by mitochondrial DNA, while the other smaller subunits, including COX IV, are nuclear-encoded. Research studies have shown that deficiency in COX activity correlates with a number of human diseases (4). The COX IV antibody can be used effectively as a mitochondrial loading control in cell-based research assays.

$305
100 µl
This Cell Signaling Technology (CST) antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated antibody (COX IV (3E11) Rabbit mAb #4850).
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Pig, Rat, Zebrafish

Application Methods: Western Blotting

Background: Cytochrome c oxidase (COX) is a hetero-oligomeric enzyme consisting of 13 subunits localized to the inner mitochondrial membrane (1-3). It is the terminal enzyme complex in the respiratory chain, catalyzing the reduction of molecular oxygen to water coupled to the translocation of protons across the mitochondrial inner membrane to drive ATP synthesis. The 3 largest subunits forming the catalytic core are encoded by mitochondrial DNA, while the other smaller subunits, including COX IV, are nuclear-encoded. Research studies have shown that deficiency in COX activity correlates with a number of human diseases (4). The COX IV antibody can be used effectively as a mitochondrial loading control in cell-based research assays.

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Pig, Rat, Zebrafish

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Cytochrome c oxidase (COX) is a hetero-oligomeric enzyme consisting of 13 subunits localized to the inner mitochondrial membrane (1-3). It is the terminal enzyme complex in the respiratory chain, catalyzing the reduction of molecular oxygen to water coupled to the translocation of protons across the mitochondrial inner membrane to drive ATP synthesis. The 3 largest subunits forming the catalytic core are encoded by mitochondrial DNA, while the other smaller subunits, including COX IV, are nuclear-encoded. Research studies have shown that deficiency in COX activity correlates with a number of human diseases (4). The COX IV antibody can be used effectively as a mitochondrial loading control in cell-based research assays.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Cytochrome c oxidase (COX) is a hetero-oligomeric enzyme consisting of 13 subunits localized to the inner mitochondrial membrane (1-3). It is the terminal enzyme complex in the respiratory chain, catalyzing the reduction of molecular oxygen to water coupled to the translocation of protons across the mitochondrial inner membrane to drive ATP synthesis. The 3 largest subunits forming the catalytic core are encoded by mitochondrial DNA, while the other smaller subunits, including COX IV, are nuclear-encoded. Research studies have shown that deficiency in COX activity correlates with a number of human diseases (4). The COX IV antibody can be used effectively as a mitochondrial loading control in cell-based research assays.

$269
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Cytochrome c oxidase (COX) is a hetero-oligomeric enzyme consisting of 13 subunits localized to the inner mitochondrial membrane (1-3). It is the terminal enzyme complex in the respiratory chain, catalyzing the reduction of molecular oxygen to water coupled to the translocation of protons across the mitochondrial inner membrane to drive ATP synthesis. The 3 largest subunits forming the catalytic core are encoded by mitochondrial DNA, while the other smaller subunits, including COX IV, are nuclear-encoded. Research studies have shown that deficiency in COX activity correlates with a number of human diseases (4). The COX IV antibody can be used effectively as a mitochondrial loading control in cell-based research assays.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Carnitine palmitoyltransferase-1 (CPT1), localized to the mitochondrial outer membrane, translocates fatty acids across the mitochondrial membranes and catalyzes the rate-limiting step of β-oxidation (1, 2). There are three isoforms of this enzyme: CPT1A (liver), CPT1B (muscle), and CPT1C (brain) (1, 2). Deficiency of CPT1A results in an autosomal recessive mitochondrial fatty acid oxidation disorder (3). Studies have shown that physiological high blood glucose and insulin levels inhibit CPT1B activity in human muscle and therefore divert long-chain fatty acids toward storage in human muscle as triglycerides (4). Furthermore, mice deficient in CPT1C show less food intake and reduced body weight (5). These findings suggest that CPT1 may play a role in metabolic syndromes.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Vitamin A gives rise to multiple species of biologically active lipophilic metabolites, known as retinoids, which play a critical role in numerous physiological processes such as vision and embryonic development. Intracellularly, all-trans retinoic acid is bound with high affinity to either cellular retinoic acid-binding protein 1 (CRABP1) or cellular retinoic acid-binding protein 2 (CRABP2), which aids in its solubilization within the aqueous cytosolic compartment. Belonging to the intracellular lipid-binding protein family (iLBP), the human CRABPs are 74% identical at the protein level and each CRABP is highly conserved across multiple species. Research studies have shown that knockout of Crabp1 is not lethal but results in defects in limb development (1), suggesting that CRABP1 plays a role in establishing retinoic acid concentration gradients in the developing limb bud. Although it remains unclear how CRABP1 may regulate the formation of retinoic acid gradients in vivo, research studies have suggested that CRABP1 can enhance the activities of intracellular retinoic acid-metabolizing enzymes, thus blunting cellular responses to retinoic acid (2-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Vitamin A gives rise to multiple species of biologically active lipophilic metabolites, known as retinoids, which play a critical role in numerous physiological processes such as vision and embryonic development. Intracellularly, all-trans retinoic acid is bound with high affinity to either cellular retinoic acid-binding protein 1 (CRABP1) or cellular retinoic acid-binding protein 2 (CRABP2), which aids in its solubilization within the aqueous cytosolic compartment. Belonging to the intracellular lipid-binding protein family (iLBP), the human CRABPs are 74% identical at the protein level and each CRABP is highly conserved across multiple species. Research studies have shown that knockout of Crabp1 is not lethal but results in defects in limb development (1), suggesting that CRABP1 plays a role in establishing retinoic acid concentration gradients in the developing limb bud. Although it remains unclear how CRABP1 may regulate the formation of retinoic acid gradients in vivo, research studies have suggested that CRABP1 can enhance the activities of intracellular retinoic acid-metabolizing enzymes, thus blunting cellular responses to retinoic acid (2-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: In steroidogenic tissues, such as the adrenal cortex, testis, ovary, and placenta, all steroids are synthesized from the common precursor cholesterol. Two families of steroidogenic enzymes, cytochrome P450 hydroxylase enzymes (CYP) and hydroxysteroid dehydrogenases (HSD), catalyze the production of most steroids. There are six distinct steroid hydroxylases, which are cytochrome P450 enzymes encoded by the steroidogenic CYP gene family (1). The cytochrome P450scc (cholesterol side-chain cleavage enzyme) encoded by CYP11A1 catalyzes the first and rate-limiting step in steroidogenesis, conversion of cholesterol into pregnenolone (2).CYP11A1, located in the inner membrane of mitochondria, cooperates with two coenzymes, ferredoxin and ferredoxin reductase, to carry out three successive oxidation-reduction reactions of cholesterol (3-5). In the adrenal cortex, testis, and ovary, CYP11A1 expression is regulated by the cAMP-PKA pathway (6), and the transcription factor SF1/NR5A1 has been shown to play a central role in mediating the cAMP signal on the CYP11A1 promoter within steroidogeneic cells of the adrenal cortex and gonads (7). Defects in CYP11A1 are the cause of adrenal insufficiency congenital with 46, XY sex reversal (AICSR), which is a rare disorder that can present as acute adrenal insufficiency in infancy or childhood (8,9).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: CYP17A1, also known as cytochrome P450C17, is a steroidogenic enzyme belonging to the P450 cytochrome superfamily of monooxygenases (1, 2). In humans, CYP17A1 expression is abundantly expressed in the adrenal cortex, where it plays a central role in the androgen synthesis pathway (2). CYP17A1 is the primary target of abiraterone, a synthetic steroid used in the treatment of castration-resistant prostate cancer (CRPC) (3, 4). Abiraterone is converted to the more active form D4A, which antagonizes androgen receptor signaling by inhibiting CYP17A1 and other steroidogenic enzymes (3, 4). This suppresses the synthesis of 5α-dihydrotestosterone (DHT), which is a driver of castration-resistant prostate cancer cell growth (3, 4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: CYP17A1, also known as cytochrome P450C17, is a steroidogenic enzyme belonging to the P450 cytochrome superfamily of monooxygenases (1, 2). In humans, CYP17A1 expression is abundantly expressed in the adrenal cortex, where it plays a central role in the androgen synthesis pathway (2). CYP17A1 is the primary target of abiraterone, a synthetic steroid used in the treatment of castration-resistant prostate cancer (CRPC) (3, 4). Abiraterone is converted to the more active form D4A, which antagonizes androgen receptor signaling by inhibiting CYP17A1 and other steroidogenic enzymes (3, 4). This suppresses the synthesis of 5α-dihydrotestosterone (DHT), which is a driver of castration-resistant prostate cancer cell growth (3, 4).