Microsize antibodies for $99 | Learn More >>

Product listing: SOD2 (D3X8F) XP® Rabbit mAb, UniProt ID P04179 #13141 to PathScan® Phospho-Acetyl-CoA Carboxylase (Ser79) Sandwich ELISA Kit, UniProt ID O00763 #7986

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Manganese superoxide dismutase (MnSOD or SOD2) is a mitochondrial detoxification enzyme that catalyzes the conversion of superoxide to hydrogen peroxide (1,2). Hydrogen peroxide is then decomposed to water by catalase, glutathione peroxidase, or peroxiredoxins (2). MnSOD/SOD2 and other enzymes involved in antioxidant defense protect cells from reactive oxygen species (ROS) (2). Calorie restriction leads to SIRT3-mediated deacetylation of MnSOD/SOD2 and the subsequent increase of its antioxidant activity (3). MnSOD/SOD2 also plays an essential role in mediating the protective effect of mTOR inhibition to reduce epithelial stem cell senescence (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Manganese superoxide dismutase (MnSOD or SOD2) is a mitochondrial detoxification enzyme that catalyzes the conversion of superoxide to hydrogen peroxide (1,2). Hydrogen peroxide is then decomposed to water by catalase, glutathione peroxidase, or peroxiredoxins (2). MnSOD/SOD2 and other enzymes involved in antioxidant defense protect cells from reactive oxygen species (ROS) (2). Calorie restriction leads to SIRT3-mediated deacetylation of MnSOD/SOD2 and the subsequent increase of its antioxidant activity (3). MnSOD/SOD2 also plays an essential role in mediating the protective effect of mTOR inhibition to reduce epithelial stem cell senescence (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Sprouty (Spry) family of proteins are antagonists of receptor tyrosine kinase (RTK)-induced signaling (1, 2). The Spry proteins play crucial roles in regulating growth and development of living organisms. Since originally discovered in Drosophila, four human orthologs of Spry proteins (Spry1-4) have been identified. All human Spry proteins possess a conserved carboxyl-terminal cysteine-rich SPR domain, which harbors a signal for protein translocation from cytosol to membrane ruffles (3,4). The SPR domain also enables the Spry proteins to form homo- or hetero-dimers and to interact with other proteins including kinases and phosphatases. The SPR domain is essential for the inhibitory modulation of Spry proteins on RTK signaling (1,2).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Steroidogenic acute regulatory protein (StAR) plays a significant role in cholesterol transport from the cytoplasmic outer membrane to the inner mitochondrial membrane (1). The 37 kDa precursor is cleaved to generate an active 28 kDa protein capable of facilitating cholesterol metabolism into pregnenolone (2,3). StAR is prevalently expressed in mitochondria of steroid-producing adrenal and gonadal tissue (3). Abnormalities in StAR gene expression are impacted in autosomal Lipoid Congenial Adrenal Hyperplasia (LCAH) resulting in defects in pregnenolone and cortisol synthesis (4). The mechanism of cholesterol binding to StAR has yet to be elucidated (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Succinyl-CoA synthetase α subunit (SUCLG1) catalyzes the conversion of succinate to succinyl-CoA and plays a key role in the citric acid cycle (1,2). Deficiency of this enzyme leads to a variety of diseases including fatal infantile lactic acidosis (3) and mitochondrial hepatoencephalomyopathy (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Insulin binds to and activates its receptor and initiates a signaling cascade that eventually induces the translocation of the Glut4 glucose transporter from its intracellular locations to the plasma membrane. Initiating this pathway facilitates glucose uptake in fat and skeletal muscle cells (1). Synip and Syntaxin 4 are two proteins thought to be involved in the recruitment of Glut4-containing vesicles to plasma membrane (2,3). Synip associates with Syntaxin 4 when insulin is absent. Insulin signaling triggers the dissociation of the two proteins and allows Syntaxin 4 to complex with VAMP2, which is essential for Glut4 translocation to plasma membrane (2-4). Overexpression of a dominant-negative form of Synip prevents Glut4 from translocating to plasma membrane in response to insulin stimulation (3). Synip together with Syntaxin 4, therefore, regulates Glut 4 transport to plasma membrane.

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: TBC1D1 is a paralog of AS160 (1) and both proteins share about 50% identity (2). TBC1D1 was shown to be a candidate gene for severe obesity (3). It plays a role in Glut4 translocation through its GAP activity (2,4). Studies indicate that TBC1D1 is highly expressed in skeletal muscle (1). Insulin, AICAR, and contraction directly regulate TBC1D1 phosphorylation in this tissue (1). Three AMPK phosphorylation sites (Ser231, Ser660, and Ser700) and one Akt phosphorylation site (Thr590) were identified in skeletal muscle (5). Muscle contraction or AICAR treatment increases phosphorylation on Ser231, Ser660, and Ser700 but not on Thr590; insulin increases phosphorylation on Thr590 only (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Thioredoxin is a small redox protein found in many eukaryotes and prokaryotes. A pair of cysteines within a highly conserved, active site sequence can be oxidized to form a disulfide bond that is then reduced by thioredoxin reductase (1). Multiple forms of thioredoxin have been identified, including cytosolic thioredoxin 1 (TRX1) and mitochondrial thioredoxin 2 (TRX2). Thioredoxin participates in many cellular processes including redox signaling, response to oxidative stress, and protein reduction (1). A potential role of thioredoxin in human disorders such as cancer, aging, and heart disease is currently under investigation (2). Thioredoxin can play a key role in cancer progression, because it acts as a negative regulator of the proapoptotic kinase ASK1 (3). Changes in thioredoxin expression have been associated with meningococcal septic shock and acute lung injury (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Thioredoxin is a small redox protein found in many eukaryotes and prokaryotes. A pair of cysteines within a highly conserved, active site sequence can be oxidized to form a disulfide bond that is then reduced by thioredoxin reductase (1). Multiple forms of thioredoxin have been identified, including cytosolic thioredoxin 1 (TRX1) and mitochondrial thioredoxin 2 (TRX2). Thioredoxin participates in many cellular processes including redox signaling, response to oxidative stress, and protein reduction (1). A potential role of thioredoxin in human disorders such as cancer, aging, and heart disease is currently under investigation (2). Thioredoxin can play a key role in cancer progression, because it acts as a negative regulator of the proapoptotic kinase ASK1 (3). Changes in thioredoxin expression have been associated with meningococcal septic shock and acute lung injury (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) is an essential step in the formation of thymine nucleotides (1,2, reviewed in 3). This process is catalyzed by thymidylate synthase (TS or TYMS), a homodimer composed of two 30 kDa subunits. TS is an intracellular enzyme that provides the sole de novo source of thymidylate, making it a required enzyme in DNA biosynthesis with activity highest in proliferating cells (1). Being the exclusive source of dTMP, investigators have concluded that TS is also an important target for anticancer agents such as 5-fluorouracil (5-FU) (1-5). 5-FU acts as a TS inhibitor and is active against solid tumors such as colon, breast, head, and neck. Research studies have demonstrated that patients with metastases expressing lower levels of TS have a higher response rate to treatment with 5-FU than patients with tumors that have increased levels of TS (5). Researchers continue to investigate TS expression in different types of cancers (6-10).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: The methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) is an essential step in the formation of thymine nucleotides (1,2, reviewed in 3). This process is catalyzed by thymidylate synthase (TS or TYMS), a homodimer composed of two 30 kDa subunits. TS is an intracellular enzyme that provides the sole de novo source of thymidylate, making it a required enzyme in DNA biosynthesis with activity highest in proliferating cells (1). Being the exclusive source of dTMP, investigators have concluded that TS is also an important target for anticancer agents such as 5-fluorouracil (5-FU) (1-5). 5-FU acts as a TS inhibitor and is active against solid tumors such as colon, breast, head, and neck. Research studies have demonstrated that patients with metastases expressing lower levels of TS have a higher response rate to treatment with 5-FU than patients with tumors that have increased levels of TS (5). Researchers continue to investigate TS expression in different types of cancers (6-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) is an essential step in the formation of thymine nucleotides (1,2, reviewed in 3). This process is catalyzed by thymidylate synthase (TS or TYMS), a homodimer composed of two 30 kDa subunits. TS is an intracellular enzyme that provides the sole de novo source of thymidylate, making it a required enzyme in DNA biosynthesis with activity highest in proliferating cells (1). Being the exclusive source of dTMP, investigators have concluded that TS is also an important target for anticancer agents such as 5-fluorouracil (5-FU) (1-5). 5-FU acts as a TS inhibitor and is active against solid tumors such as colon, breast, head, and neck. Research studies have demonstrated that patients with metastases expressing lower levels of TS have a higher response rate to treatment with 5-FU than patients with tumors that have increased levels of TS (5). Researchers continue to investigate TS expression in different types of cancers (6-10).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Tom20 (D8T4N) Rabbit mAb #42406.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Mitochondria play a central role in cellular energy metabolism and are essential organelles in eukaryotes. In humans, 13 proteins are encoded by the mitochondrial genome while the vast majority of mitochondrial proteins are encoded by the nuclear genome. As a result, most mitochondrial proteins are synthesized as precursors in the cytoplasm and imported across mitochondrial membranes by one or more translocase protein complexes (1). The translocase of the outer mitochondrial membrane (TOM complex) facilitates the import of proteins through the outer mitochondrial membrane, while the complementary translocase of the inner membrane (TIM complex) is responsible for protein transport to the mitochondrial matrix. The TOM complex consists of the receptors Tom20, Tom22, and Tom70, and the channel-forming protein Tom40 (1). Tom20 is localized in the outer mitochondrial membrane and initially recognizes precursors with a presequence to facilitate protein import across the outer mitochondrial membrane (2). In a sequential process, recognition of the presequence by Tom20 is followed by tethering of the presequence to the Tom40 protein complex for efficient protein import (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Mitochondria play a central role in cellular energy metabolism and are essential organelles in eukaryotes. In humans, 13 proteins are encoded by the mitochondrial genome while the vast majority of mitochondrial proteins are encoded by the nuclear genome. As a result, most mitochondrial proteins are synthesized as precursors in the cytoplasm and imported across mitochondrial membranes by one or more translocase protein complexes (1). The translocase of the outer mitochondrial membrane (TOM complex) facilitates the import of proteins through the outer mitochondrial membrane, while the complementary translocase of the inner membrane (TIM complex) is responsible for protein transport to the mitochondrial matrix. The TOM complex consists of the receptors Tom20, Tom22, and Tom70, and the channel-forming protein Tom40 (1). Tom20 is localized in the outer mitochondrial membrane and initially recognizes precursors with a presequence to facilitate protein import across the outer mitochondrial membrane (2). In a sequential process, recognition of the presequence by Tom20 is followed by tethering of the presequence to the Tom40 protein complex for efficient protein import (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Western Blotting

Background: Glucose homeostasis is regulated by hormones and cellular energy status. Elevations of blood glucose during feeding stimulate insulin release from pancreatic β-cells through a glucose sensing pathway. Feeding also stimulates release of gut hormones such as glucagon-like peptide-1 (GLP-1), which further induces insulin release, inhibits glucagon release and promotes β-cell viability. CREB-dependent transcription likely plays a role in both glucose sensing and GLP-1 signaling (1). The protein CRTC2 (CREB-regulated transcription coactivator 2)/TORC2 (transducer of regulated CREB activity 2) functions as a CREB co-activator (2,3) and is implicated in mediating the effects of these two pathways (4). In quiescent cells, CRTC2/TORC2 is phosphorylated at Ser171 and becomes sequestered in the cytoplasm via an interaction with 14-3-3 proteins. Glucose and gut hormones lead to the dephosphorylation of CRTC2/TORC2 and its dissociation from 14-3-3 proteins. Dephosphorylated CRTC2/TORC2 enters the nucleus to promote CREB-dependent transcription. CRTC2/TORC2 plays a key role in the regulation of hepatic gluconeogenic gene transcription in response to hormonal and energy signals during fasting (5).CRTC2/TORC2-related proteins CRTC1/TORC1 and CRTC3/TORC3 also act as CREB co-activators (2,3). CRTC1/TORC1, CRTC2/TORC2 and CRTC3/TORC3 associate with the HTLV Tax protein to promote Tax-dependent transcription of HTLV-1 long terminal repeats (6,7). CRTC1/TORC1 is highly phosphorylated at Ser151 in mouse hypothalamic cells under basal conditions (8). When these cells are exposed to cAMP or a calcium activator, CRTC1/TORC1 is dephosphorylated and translocates into the nucleus (8). CRTC1/TORC1 is essential for energy balance and fertility (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Glucose homeostasis is regulated by hormones and cellular energy status. Elevations of blood glucose during feeding stimulate insulin release from pancreatic β-cells through a glucose sensing pathway. Feeding also stimulates release of gut hormones such as glucagon-like peptide-1 (GLP-1), which further induces insulin release, inhibits glucagon release and promotes β-cell viability. CREB-dependent transcription likely plays a role in both glucose sensing and GLP-1 signaling (1). The protein CRTC2 (CREB-regulated transcription coactivator 2)/TORC2 (transducer of regulated CREB activity 2) functions as a CREB co-activator (2,3) and is implicated in mediating the effects of these two pathways (4). In quiescent cells, CRTC2/TORC2 is phosphorylated at Ser171 and becomes sequestered in the cytoplasm via an interaction with 14-3-3 proteins. Glucose and gut hormones lead to the dephosphorylation of CRTC2/TORC2 and its dissociation from 14-3-3 proteins. Dephosphorylated CRTC2/TORC2 enters the nucleus to promote CREB-dependent transcription. CRTC2/TORC2 plays a key role in the regulation of hepatic gluconeogenic gene transcription in response to hormonal and energy signals during fasting (5).CRTC2/TORC2-related proteins CRTC1/TORC1 and CRTC3/TORC3 also act as CREB co-activators (2,3). CRTC1/TORC1, CRTC2/TORC2 and CRTC3/TORC3 associate with the HTLV Tax protein to promote Tax-dependent transcription of HTLV-1 long terminal repeats (6,7). CRTC1/TORC1 is highly phosphorylated at Ser151 in mouse hypothalamic cells under basal conditions (8). When these cells are exposed to cAMP or a calcium activator, CRTC1/TORC1 is dephosphorylated and translocates into the nucleus (8). CRTC1/TORC1 is essential for energy balance and fertility (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Glucose homeostasis is regulated by hormones and cellular energy status. Elevations of blood glucose during feeding stimulate insulin release from pancreatic β-cells through a glucose sensing pathway. Feeding also stimulates release of gut hormones such as glucagon-like peptide-1 (GLP-1), which further induces insulin release, inhibits glucagon release and promotes β-cell viability. CREB-dependent transcription likely plays a role in both glucose sensing and GLP-1 signaling (1). The protein CRTC2 (CREB-regulated transcription coactivator 2)/TORC2 (transducer of regulated CREB activity 2) functions as a CREB co-activator (2,3) and is implicated in mediating the effects of these two pathways (4). In quiescent cells, CRTC2/TORC2 is phosphorylated at Ser171 and becomes sequestered in the cytoplasm via an interaction with 14-3-3 proteins. Glucose and gut hormones lead to the dephosphorylation of CRTC2/TORC2 and its dissociation from 14-3-3 proteins. Dephosphorylated CRTC2/TORC2 enters the nucleus to promote CREB-dependent transcription. CRTC2/TORC2 plays a key role in the regulation of hepatic gluconeogenic gene transcription in response to hormonal and energy signals during fasting (5).CRTC2/TORC2-related proteins CRTC1/TORC1 and CRTC3/TORC3 also act as CREB co-activators (2,3). CRTC1/TORC1, CRTC2/TORC2 and CRTC3/TORC3 associate with the HTLV Tax protein to promote Tax-dependent transcription of HTLV-1 long terminal repeats (6,7). CRTC1/TORC1 is highly phosphorylated at Ser151 in mouse hypothalamic cells under basal conditions (8). When these cells are exposed to cAMP or a calcium activator, CRTC1/TORC1 is dephosphorylated and translocates into the nucleus (8). CRTC1/TORC1 is essential for energy balance and fertility (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: TRXR1 (thioredoxin reductase 1) is a selenocysteine-containing protein that is involved in redox homeostasis (1-6). Its canonical target is thioredoxin, another redox protein (1). Together, they are involved in many functions such as antioxidant regulation (3-6), cell proliferation (2,3,5), DNA replication (2,3), and transcription (3,5). TRXR1 is also capable of reducing a wide array of cellular proteins (1,3). Selenium deficiency, either by diet modification (2,6) or introduction of methylmercury (4), hinders proper expression and function of TRXR1. It is possible that this effect, which results in a higher oxidative state, is a result of the selenocysteine codon (UGA) being read as a STOP codon in the absence of adequate selenium (4). The functions of TRXR1 in cell proliferation and antioxidant defense make it a potential therapeutic target.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Thioredoxin reductases are selenoproteins that are critical for maintaining cellular redox balance and eliminating reactive oxygen species (ROS) (1-4). There are three known mammalian thioredoxin reductases: TRXR1/TXNRD1 (cytosolic), TRXR2/TXNRD2 (mitochondrial), and TRXR3/TXNRD3 (testis-specific) (1). TRXR2 may function to protect against tumor necrosis factor-α (TNF-α)-mediated ROS generation (5). TRXR2 is critical for normal heart development and function (1,4). TRXR2 KO mice experience embryonic lethality, while mitochondrial dysfunction seen in heart-specific TRXR2 KO mice results in congestive heart failure (4). In humans, certain rare mutations in TRXR2 have been linked to dilated cardiomyopathy (1). A recent study in the EPIC-Heidelberg cohort shows that serum selenium levels, in concert with certain SNPs in TRXR2 and other selenoproteins, can influence prostate cancer risk (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The ubiquitously expressed thioredoxin-interacting protein (TXNIP) binds and inhibits thioredoxin to regulate cellular redox state (1-3). Research studies demonstrate that hyperglycemia induces TXNIP expression and increases cellular oxidative stress (1). In addition, these studies show that TXNIP reduces glucose uptake directly by binding the glucose transporter Glut1 to stimulate receptor internalization or indirectly by reducing Glut1 mRNA levels (3). Additional studies indicate that TXNIP plays a role in the regulation of insulin mRNA transcription (4). Microarray analyses indicate that TXNIP acts downstream of PPARγ and is a putative tumor suppressor that may control thyroid cancer cell progression (5). In addition, the TXNIP protein may be a potential therapeutic target for the treatment of type 2 diabetes and some disorders related to ER-stress (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Uncoupling protein 1 (UCP1) is a mitochondrial inner membrane transport protein that is primarily expressed in brown adipose tissue (BAT). UCP1 dissipates the pH gradient resulting from oxidative phosphorylation, which uncouples ATP synthesis from oxidative phosphorylation and leads to the release of heat energy. As a result, UCP1 plays an important role in thermogenesis (reviewed in 1). Research studies indicate that subcutaneous white adipose depots in mice contain beige adipocytes that express low levels of UCP1 protein (2). Additional studies show possible differences in thermogenesis in individuals carrying specific polymorphisms in the corresponding UCP1 gene (3). Related studies link UCP1 to the possible development of obesity and type 2 diabetes (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Uncoupling protein 2 (UCP2) is a mitochondrial inner membrane transport protein that is expressed in a wide range of tissues (1). UCP2 inhibits mitochondrial glucose oxidation and promotes glycolysis in human pluripotent stem cells (hPSCs) (2). During early differentiation of hPSCs, the expression of UCP2 is repressed, which results in reduced glycolysis (2). This demonstrates a role for UCP2 in the metabolic reprogramming during differentiation of hPSCs (2). Overexpression of UCP2 in cancer cells stimulates oxidative phosphorylation in mitochondria and inhibits cell proliferation (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Uncoupling protein 3 (UCP3), a mitochondrial inner membrane transport protein, is highly expressed in skeletal muscle and activates glucose transport in muscle cells (2). UCP3 lowers the production of reactive oxygen species in mitochondria by reducing the mitochondrial inner membrane potential (3). UCP3 has been implicated in the protection against fat-induced insulin resistance in skeletal muscle (4) and fat gain induced by high-fat feeding (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Mitochondria are membrane-bound subcellular organelles critical to many functions in eukaryotic cells (1). Several mechanisms have been found to play a role in mitochondria quality control (2). A recent study identified mitochondria-associated protein degradation as one such mechanism (1,2). The study showed that VMS1 (VCP/Cdc48-associated mitochondrial stress-responsive) interacts with VCP/Cdc48 and Npl4, two components in the endoplasmic reticulum-associated protein degradation pathway, and mediates the degradation of damaged mitochondrial proteins under stress conditions (1). Defective VMS1 compromises mitochondrial functions and cell viability (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The x(c)(-) cysteine/glutamate antiporter consists of a light chain subunit (xCT/SLC7A11) that confers substrate specificity and a glycosylated heavy chain subunit (4F2hc/SLC3A2) located on the cell surface (1,2). The heterodimeric amino acid transport system x(c)(-) provides selective import of cysteine into cells in exchange for glutamate and regulating intracellular glutathione (GSH) levels, which is essential for cellular protection from oxidative stress (3). Research studies have shown that xCT expression increases in various tumors, including gliomas, and have implicated xCT in GSH-mediated anticancer drug resistance (4,5). Researchers have found that xCT provides neuroprotection by enhancing glutathione export from non-neuronal cells (6). Moreover, investigators identified xCT as the fusion-entry receptor for Kaposi's sarcoma-associated herpesvirus (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The solute carrier family 39 (zinc transporter) member 7 (SLC39A7, ZIP7) is an ER and Golgi membrane protein that regulates cellular zinc homeostasis by controlling release of zinc from these organelles to the cytoplasm (1,2). Zinc release mediated by ZIP7 results in activation of protein kinases that are involved in cell proliferation and migration (3,4). The protein kinase CK2 phosphorylates and activates ZIP7 in response to extracellular signals, such as growth factor stimulation (4,5). Increased expression of ZIP7 is observed in breast cancer tissues (6). Research studies indicate that ZIP7 is responsible for activation of multiple tyrosine kinases in aggressive, tamoxifen-resistant breast cancer (7,8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: α-amylase catalyzes the cleavage of 1, 4-α-D-glucosidic bonds in oligosaccharides and polysaccharides (1). The enzyme is normally produced and secreted in salivary glands (salivary α-amylase or AMY1) and pancreas (pancreatic α-amylase or AMY2A) (1). Studies reported the release of an ectopically expressed α-amylase in certain tumors (1). Furthermore, a new type of α-amylase (carcinoid α-amylase or AMY2B) was identified in a lung carcinoid tissue (2-4). The ectopic expression of α-amylase in a neuroendocrine tumor was also reported (5).

The One-Carbon Metabolism Antibody Sampler Kit provides an economical means of detecting select components involved in one-carbon metabolism pathway. The kit contains enough primary antibodies to perform at least two western blot experiments per antibody.

Background: One-carbon metabolism includes various enzymatic reactions involving the transfer of one-carbon groups mediated by folate cofactor (1). The activated one-carbon groups are used by various metabolic pathways, including purine synthesis, thymidine synthesis, and remethylation of homocysteine to methionine (1). S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) is a member of the S-adenosylhomocysteine hydrolase family, which participates in the metabolism of S-adenosyl-L-homocysteine (2). Cystathionine beta-synthase (CBS) is a key enzyme involved in sulfur amino acid metabolism as it catalyzes the formation of cystathionine from serine and homocysteine (3,4). Cystathionine γ-lyase (CGL) is an enzyme in the transsulfuration pathway, a route in the metabolism of sulfur-containing amino acids (5). Methylenetetrahydrofolate reductase (MTHFR), a key enzyme in one-carbon metabolism, catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate (1). 5-methyltetrahydrofolate donates its methyl group for remethylation of homocysteine to methionine (1). Methionine is further converted to S-adenosylmethionine (SAM), a major reactive methyl carrier (1). NADP+ dependent methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) is a mitochondrial enzyme that catalyzes the production of formate from 10-formyl-tetrahydrofolate in one-carbon flow from mitochondria to cytoplasm (6,7). MTHFD2 is a bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase involved in mitochondrial folate metabolism (8). Serine hydroxymethyltransferase 1 (SHMT1) is a cytoplasmic serine hydroxylmethyltransferase (9,10). It catalyzes the conversion of serine to glycine with the transfer of β-carbon from serine to tetrahydrofolate (THF) to form 5, 10-methylene-THF (9, 10). The methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) is an essential step in the formation of thymine nucleotides, a process catalyzed by thymidylate synthase (TS or TYMS) (11-13).

$489
96 assays
1 Kit
The PathScan® Phospho-Acetyl-CoA Carboxylase (Ser79) Chemiluminescent Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of acetyl-CoA carboxylase (ACC) protein phosphorylated at Ser79 with a chemiluminescent readout. Chemiluminescent ELISAs often have a wider dynamic range and higher sensitivity than conventional chromogenic detection. This chemiluminescent ELISA, which is offered in low volume microplates, shows increased signal and sensitivity while using smaller samples. A Phospho-ACC (Ser79) Rabbit Antibody has been coated onto the microwells. After incubation with cell lysates, phospho-ACC protein is captured by the coated antibody. Following extensive washing, an ACC Mouse Detection mAb is added to detect the captured ACC protein. Anti-mouse IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. Chemiluminescent reagent is added for signal development. The magnitude of light emission, measured in relative light units (RLU), is proportional to the quantity of phospho-ACC (Ser79) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Acetyl-CoA carboxylase (ACC) catalyzes the carboxylation of acetyl-CoA to malonyl-CoA (1). It is the key enzyme in the biosynthesis and oxidation of fatty acids (1). In rodents, the 265 kDa ACC1 (ACCα) form is primarily expressed in lipogenic tissues, while 280 kDa ACC2 (ACCβ) is the main isoform in oxidative tissues (1,2). However, in humans, ACC2 is the predominant isoform in both lipogenic and oxidative tissues (1,2). Phosphorylation by AMPK at Ser79 or by PKA at Ser1200 inhibits the enzymatic activity of ACC (3). ACC is a potential target of anti-obesity drugs (4,5).

$489
96 assays
1 Kit
The PathScan® Phospho-Acetyl-CoA Carboxylase (Ser79) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of acetyl-CoA carboxylase (ACC) when phosphorylated at Ser79. A phospho-ACC (Ser79) rabbit antibody has been coated onto the microwells. After incubation with cell lysates, phospho-ACC protein is captured by the coated antibody. Following extensive washing, an ACC mouse detection mAb is added to detect the captured ACC protein. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for the developed color is proportional to the quantity of ACC phosphorylated at Ser79.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Acetyl-CoA carboxylase (ACC) catalyzes the carboxylation of acetyl-CoA to malonyl-CoA (1). It is the key enzyme in the biosynthesis and oxidation of fatty acids (1). In rodents, the 265 kDa ACC1 (ACCα) form is primarily expressed in lipogenic tissues, while 280 kDa ACC2 (ACCβ) is the main isoform in oxidative tissues (1,2). However, in humans, ACC2 is the predominant isoform in both lipogenic and oxidative tissues (1,2). Phosphorylation by AMPK at Ser79 or by PKA at Ser1200 inhibits the enzymatic activity of ACC (3). ACC is a potential target of anti-obesity drugs (4,5).