Cool deals on CST mAbs | Learn More >>

Product listing: GAD2 (D5G2) XP® Rabbit mAb, UniProt ID Q05329 #5843 to LRRK2 (D18E12) Rabbit mAb, UniProt ID Q5S007 #13046

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: The enzyme glutamate decarboxylase (GAD) is responsible for the synthesis of the essential neurotransmitter gamma-aminobutyric acid (GABA) from L-glutamic acid (1). GAD1 (GAD67) and GAD2 (GAD65) are expressed in nervous and endocrine systems (2) and are thought to be involved in synaptic transmission (3) and insulin secretion (4), respectively. Autoantibodies against GAD2 may serve as markers for type I diabetes (5). Many individuals suffering from an adult onset disorder known as Stiff Person Syndrome (SPS) also express autoantibodies to GAD2 (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: GAP43 is a nervous system specific, growth-associated protein enriched in growth cones and areas of high plasticity (1). Phosphorylation of GAP43 at Ser41 by PKC is regulated by intracellular Ca2+ and affects the ability of GAP43 to bind calmodulin (2,3). GAP43 is integral to growth cone formation, neurite outgrowth, and the development of a functional cerebral cortex (4,5). Aberrant GAP43 expression can be seen in patients diagnosed with schizophrenia and Alzheimer's disease (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunofluorescence (Frozen)

Background: The neurotransmitters GABA and glycine activate ligand-gated chloride channels and thus mediate fast synaptic inhibition. Gephyrin is a postsynaptic, scaffolding protein anchoring type A GABA and glycine receptors to the cytoskeleton. In addition to gephyrin’s function clustering synaptic neurotransmitter receptors, it plays an essential role in the biosynthesis of the molybdenum cofactor (MoCo). Molybdenum cofactor chelates and activates sulfite oxidase, an enzyme crucial for survival (1). GSK-3β and Erk1/2 phosphorylate gephyrin at residue Ser270 and Ser268, respectively. These post-translational modifications alter the clustering of gephyrin, effecting the amplitude and frequency of GABAergic inhibitory currents (2,3). Researchers are analyzing the role of abnormal gephyrin clustering and function in major neurological, neuro-developmental and psychiatric disorders (1).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated GFAP (D1F4Q) XP® Rabbit mAb #12389.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The cytoskeleton consists of three types of cytosolic fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. Major types of intermediate filaments are specifically expressed in particular cell types: cytokeratins in epithelial cells, glial fibrillary acidic protein (GFAP) in glial cells, desmin in skeletal, visceral, and certain vascular smooth muscle cells, vimentin in cells of mesenchymal origin, and neurofilaments in neurons. GFAP and vimentin form intermediate filaments in astroglial cells and modulate their motility and shape (1). In particular, vimentin filaments are present at early developmental stages, while GFAP filaments are characteristic of differentiated and mature brain astrocytes. Thus, GFAP is commonly used as a marker for intracranial and intraspinal tumors arising from astrocytes (2). In addition, GFAP intermediate filaments are also present in nonmyelin-forming Schwann cells in the peripheral nervous system (3).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Western Blotting

Background: The cytoskeleton consists of three types of cytosolic fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. Major types of intermediate filaments are specifically expressed in particular cell types: cytokeratins in epithelial cells, glial fibrillary acidic protein (GFAP) in glial cells, desmin in skeletal, visceral, and certain vascular smooth muscle cells, vimentin in cells of mesenchymal origin, and neurofilaments in neurons. GFAP and vimentin form intermediate filaments in astroglial cells and modulate their motility and shape (1). In particular, vimentin filaments are present at early developmental stages, while GFAP filaments are characteristic of differentiated and mature brain astrocytes. Thus, GFAP is commonly used as a marker for intracranial and intraspinal tumors arising from astrocytes (2). In addition, GFAP intermediate filaments are also present in nonmyelin-forming Schwann cells in the peripheral nervous system (3).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Western Blotting

Background: The cytoskeleton consists of three types of cytosolic fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. Major types of intermediate filaments are specifically expressed in particular cell types: cytokeratins in epithelial cells, glial fibrillary acidic protein (GFAP) in glial cells, desmin in skeletal, visceral, and certain vascular smooth muscle cells, vimentin in cells of mesenchymal origin, and neurofilaments in neurons. GFAP and vimentin form intermediate filaments in astroglial cells and modulate their motility and shape (1). In particular, vimentin filaments are present at early developmental stages, while GFAP filaments are characteristic of differentiated and mature brain astrocytes. Thus, GFAP is commonly used as a marker for intracranial and intraspinal tumors arising from astrocytes (2). In addition, GFAP intermediate filaments are also present in nonmyelin-forming Schwann cells in the peripheral nervous system (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: The cytoskeleton consists of three types of cytosolic fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. Major types of intermediate filaments are specifically expressed in particular cell types: cytokeratins in epithelial cells, glial fibrillary acidic protein (GFAP) in glial cells, desmin in skeletal, visceral, and certain vascular smooth muscle cells, vimentin in cells of mesenchymal origin, and neurofilaments in neurons. GFAP and vimentin form intermediate filaments in astroglial cells and modulate their motility and shape (1). In particular, vimentin filaments are present at early developmental stages, while GFAP filaments are characteristic of differentiated and mature brain astrocytes. Thus, GFAP is commonly used as a marker for intracranial and intraspinal tumors arising from astrocytes (2). In addition, GFAP intermediate filaments are also present in nonmyelin-forming Schwann cells in the peripheral nervous system (3).

$305
100 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct immunofluorescence of rat cells. The unconjugated antibody GFAP (GA5) Mouse mAb #3670 reacts with human, mouse and rat GFAP protein. CST expects that GFAP (GA5) Mouse mAb (Alexa Fluor® 488 Conjugate) will also recognize GFAP in these species.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen)

Background: The cytoskeleton consists of three types of cytosolic fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. Major types of intermediate filaments are specifically expressed in particular cell types: cytokeratins in epithelial cells, glial fibrillary acidic protein (GFAP) in glial cells, desmin in skeletal, visceral, and certain vascular smooth muscle cells, vimentin in cells of mesenchymal origin, and neurofilaments in neurons. GFAP and vimentin form intermediate filaments in astroglial cells and modulate their motility and shape (1). In particular, vimentin filaments are present at early developmental stages, while GFAP filaments are characteristic of differentiated and mature brain astrocytes. Thus, GFAP is commonly used as a marker for intracranial and intraspinal tumors arising from astrocytes (2). In addition, GFAP intermediate filaments are also present in nonmyelin-forming Schwann cells in the peripheral nervous system (3).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 555 fluorescent dye and tested in-house for direct immunofluorescence of rat cerebellum. The unconjugated antibody #3670 reacts with human, mouse and rat GFAP protein. CST expects that GFAP (GA5) Mouse mAb (Alexa Fluor® 555 Conjugate) will also recognize GFAP in these species.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen)

Background: The cytoskeleton consists of three types of cytosolic fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. Major types of intermediate filaments are specifically expressed in particular cell types: cytokeratins in epithelial cells, glial fibrillary acidic protein (GFAP) in glial cells, desmin in skeletal, visceral, and certain vascular smooth muscle cells, vimentin in cells of mesenchymal origin, and neurofilaments in neurons. GFAP and vimentin form intermediate filaments in astroglial cells and modulate their motility and shape (1). In particular, vimentin filaments are present at early developmental stages, while GFAP filaments are characteristic of differentiated and mature brain astrocytes. Thus, GFAP is commonly used as a marker for intracranial and intraspinal tumors arising from astrocytes (2). In addition, GFAP intermediate filaments are also present in nonmyelin-forming Schwann cells in the peripheral nervous system (3).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 594 fluorescent dye and tested in-house for direct immunofluorescent analysis in rat cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated GFAP (GA5) Mouse mAb #3670.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen)

Background: The cytoskeleton consists of three types of cytosolic fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. Major types of intermediate filaments are specifically expressed in particular cell types: cytokeratins in epithelial cells, glial fibrillary acidic protein (GFAP) in glial cells, desmin in skeletal, visceral, and certain vascular smooth muscle cells, vimentin in cells of mesenchymal origin, and neurofilaments in neurons. GFAP and vimentin form intermediate filaments in astroglial cells and modulate their motility and shape (1). In particular, vimentin filaments are present at early developmental stages, while GFAP filaments are characteristic of differentiated and mature brain astrocytes. Thus, GFAP is commonly used as a marker for intracranial and intraspinal tumors arising from astrocytes (2). In addition, GFAP intermediate filaments are also present in nonmyelin-forming Schwann cells in the peripheral nervous system (3).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct immunofluorescence of rat cells. The unconjugated antibody #3670 reacts with human, mouse and rat GFAP protein. CST expects that GFAP (GA5) Mouse mAb (Alexa Fluor® 647 Conjugate) will also recognize GFAP in these species.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen)

Background: The cytoskeleton consists of three types of cytosolic fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. Major types of intermediate filaments are specifically expressed in particular cell types: cytokeratins in epithelial cells, glial fibrillary acidic protein (GFAP) in glial cells, desmin in skeletal, visceral, and certain vascular smooth muscle cells, vimentin in cells of mesenchymal origin, and neurofilaments in neurons. GFAP and vimentin form intermediate filaments in astroglial cells and modulate their motility and shape (1). In particular, vimentin filaments are present at early developmental stages, while GFAP filaments are characteristic of differentiated and mature brain astrocytes. Thus, GFAP is commonly used as a marker for intracranial and intraspinal tumors arising from astrocytes (2). In addition, GFAP intermediate filaments are also present in nonmyelin-forming Schwann cells in the peripheral nervous system (3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: The cytoskeleton consists of three types of cytosolic fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. Major types of intermediate filaments are specifically expressed in particular cell types: cytokeratins in epithelial cells, glial fibrillary acidic protein (GFAP) in glial cells, desmin in skeletal, visceral, and certain vascular smooth muscle cells, vimentin in cells of mesenchymal origin, and neurofilaments in neurons. GFAP and vimentin form intermediate filaments in astroglial cells and modulate their motility and shape (1). In particular, vimentin filaments are present at early developmental stages, while GFAP filaments are characteristic of differentiated and mature brain astrocytes. Thus, GFAP is commonly used as a marker for intracranial and intraspinal tumors arising from astrocytes (2). In addition, GFAP intermediate filaments are also present in nonmyelin-forming Schwann cells in the peripheral nervous system (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: GGA3 is a member of the GGA family of proteins which also includes GGA1 and GGA2. These proteins consist of four distinct segments: a VHS domain that binds the di-leucine sorting signal DXXLL; a GAT domain that binds Arf-GTP; a hinge region that recruits clathrin; and a GAE domain that has sequence similarity to γ-adaptin and recruits a number of proteins. Arf1-GTPase recruits GGA3 to the trans-Golgi network. GGAs sort acid hydrolases to the lysosome and are involved in transporting proteins containing the DXXLL signal from the Golgi complex to the endosome (1). During apoptosis or cerebral ischemia, GGA3 is cleaved by caspase-3 at Asp313, reducing GGA3 levels and lysosomal degradation of β-secretase (BACE). The resulting elevated amount and activity of BACE plays a role in amyloid-β (Aβ) production, consistent with BACE elevation and Aβ accumulation in Alzheimer’s Disease (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: GIRK2 is a member of G protein-coupled inwardly rectifying potassium channel family proteins (GIRKs). GIRK family proteins allow potassium to flow into the cell and therefore control cellular excitability in the central nervous system, heart, and pancreas (1-4). Activation of most GIRK channels requires heterologous subunit assembly and the presence of ATP (5-7). GIRK2 is abundantly expressed in the brain, where it is involved in pain perception. It is also required for peripheral opioid-mediated analgesia (8). Additionally GIRK2 localizes to pancreatic β cells and regulates insulin secretion (9,10). Mutations in the KCNJ6 gene encoding GIRK2 are associated with Keppen-Lubinsky Syndrome, a rare disease characterized by severe developmental delay, facial dysmorphism, and intellectual disability (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: GIRK2 is a member of G protein-coupled inwardly rectifying potassium channel family proteins (GIRKs). GIRK family proteins allow potassium to flow into the cell and therefore control cellular excitability in the central nervous system, heart, and pancreas (1-4). Activation of most GIRK channels requires heterologous subunit assembly and the presence of ATP (5-7). GIRK2 is abundantly expressed in the brain, where it is involved in pain perception. It is also required for peripheral opioid-mediated analgesia (8). Additionally GIRK2 localizes to pancreatic β cells and regulates insulin secretion (9,10). Mutations in the KCNJ6 gene encoding GIRK2 are associated with Keppen-Lubinsky Syndrome, a rare disease characterized by severe developmental delay, facial dysmorphism, and intellectual disability (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Glutamate dehydrogenase is a mitochondrial enzyme that catalyzes the oxidative deamination of glutamate to α-ketoglutarate through association with the cofactor nicotinamide adenine dinucleotide phosphate (1). Glutamate dehydrogenase is highly expressed in various tissues such as the liver, brain, kidney, heart, pancreas, ovaries, and testis. Two isoforms produced by two distinct genes are found in mammalian tissues. The GLUD1 gene is ubiquitously expressed (2), while the GLUD2 gene is specifically expressed in testicular tissues and astrocytes (3,4). Glutamate dehydrogenase links glutamate to the Krebs cycle, thereby playing a critical role in the regulation of energy homeostasis. Research studies have shown that changes in glutamate dehydrogenase activity in pancreatic β-cells can cause a hyperinsulinism syndrome (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: GPR37 is a G protein-coupled receptor (GPCR) that was originally identified as an orphan receptor highly expressed in the brain and testis (1). It shares significant homology with the receptors of endothelin and bombesin peptides (1). Neuropeptide head activator from the invertebrate Hydra was identified as a high-affinity ligand of GPR37 (2), however, to date, no mammalian ortholog of this peptide that could represent an endogenous GPR37 ligand has been identified. Recently, GPR37 was deorphanized as the receptor for the endogenous peptides prosaptide and prosaposin (3). GPR37 is a substrate of the E3 ubiquitin ligase parkin, and is often referred to as “parkin-associated endothelin-like receptor,” or “Pael-R” (4). GPR37 has been implicated in the pathogenesis of Parkinson’s Disease as it aggregates in the substantia nigra of some PD patients (4,5). Interestingly, prosaposin exerts neuroprotective, neurotrophic, and gliotrophic actions (6), and GPR37 was identified as a negative regulator of oligodendrocyte differentiation and myelination (7), suggesting that it could represent a potential target for demyelinating pathologies.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: G protein-coupled receptor 50 (GPR50) is an orphan G protein coupled receptor with high sequence homology to the melatonin receptors MT1 and MT2. While classified as a member of the melatonin receptor family and also known as melatonin-related receptor, GPR50 does not bind melatonin (1). GPR50 forms heterodimers with MT1 and MT2 and acts as a negative regulator of MT1 agonist binding and G protein coupling; inhibition of melatonin receptor activity is dependent on the long, proline-rich carboxy terminal tail of GPR50 (2). On a physiological level, GPR50 is involved in the regulation of adaptive thermoregulation in mammals and deletion of GPR50 in mice produces a profound effect on the response to fasting and facilitates entry into torpor (3). Polymorphisms in the corresponding GPR50 gene are associated with bipolar affective disorder and major depressive disorder in women, indicating that variation in GPR50 may be an important gender-specific risk factor for certain mental disorders (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: G-protein-coupled receptor kinase 3 (GRK3), also known as beta-adrenergic receptor kinase 2 (beta-ARK2), is a member of the GRK family, which phosphorylates the activated form of G-protein-coupled receptors (GPCRs) and initiates the desensitization process of GPCR (1). GRK3 has been implicated in the phosphorylation of GPCRs, enabling their interaction with beta-arrestin, and facilitating their signaling through ERK1/2 phosphorylation (2). More recently, GRK3 was found to play a critical role in tumor progression through stimulation of angiogenesis; furthermore, GRK3 was found to be overexpressed in human prostate cancer, in particular in metastatic tumors (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Glutathione S-transferases (GSTs) are a family of isoenzymes that detoxify electrophiles through conjugation to thiol-reduced glutathione (GSH). Thus, they are critical in protecting cells from toxins (drugs, pesticides, carcinogens) and oxidative stress (1). Eight isoforms of cytosolic-soluble GSTs (α, κ, μ, π, σ, θ, ζ, and ω) are identified, while only GST-α, -μ, and -π are described in the central nervous system (2). GSTP1 (GSTπ) is overexpressed in early stages of carcinogenesis and can be used as a neoplastic marker in tumor tissues (3). GSTP1 directly inhibits TRAF2 and JNK but not NF-κB (4,5). Corresponding GSTP1 gene polymorphisms affect substrate selectivity and stability, and the oxidative milieu in dopaminergic neurons, which increases the susceptibility to Parkinson’s disease (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The voltage-activated ion channel superfamily includes both cyclic nucleotide-gated (CNG) channels and hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels (1,2). The direct binding of the cyclic nucleotides cAMP and cGMP promotes the gating of these channels, from the closed to an open state. Research studies demonstrate that HCN channels are involved in repetitive firing, resting membrane potential, and dendritic integration in neurons (1,3). HCN proteins are found in homotetramers and heterotetramers composed of HCN1 and HCN2 subunits (4). Tetramerization of HCN proteins results from cAMP binding to the channel, which triggers the release of the tonic inhibition exerted by the cytoplasmic cyclic nucleotide binding domain on the channel pore (5). HCN channels expressed in dorsal root ganglia neurons may play a role in acute inflammatory pain (6). Cardiac HCN channels ensure electrical rhythmicity in cardiomyocytes (7).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Huntington's Disease (HD) is a fatal neurodegenerative disorder characterized by psychiatric, cognitive, and motor dysfunction. Neuropathology of HD involves specific neuronal subpopulations: GABA-ergic neurons of the striatum and neurons within the cerebral cortex selectively degenerate (1,2). The genetic analysis of HD has been the flagship study of inherited neurological diseases from initial chromosomal localization to identification of the gene.Huntingtin is a large (340-350 kD) cytosolic protein that may be involved in a number of cellular functions such as transcription, gastrulation, neurogenesis, neurotransmission, axonal transport, neural positioning, and apoptosis (2,3). The HD gene from unaffected individuals contains between 6 and 34 CAG trinucleotide repeats, with expansion beyond this range causing the onset of disease symptoms. A strong inverse correlation exists between the age of onset in patients and the number of huntingtin gene CAG repeats encoding a stretch of polyglutamine peptides (1,2). The huntingtin protein undergoes numerous post-translational modifications including phosphorylation, ubiquitination, sumoylation, palmitoylation, and cleavage (2). Phosphorylation of Ser421 by Akt can partially counteract the toxicity that results from the expanded polyglutamine tract. Varying Akt expression in the brain correlates with regional differences in huntingtin protein phosphorylation; this pattern inversely correlates with the regions that are most affected by degeneration in diseased brain (2). A key step in the disease is the proteolytic cleavage of huntingtin protein into amino-terminal fragments that contain expanded glutamine repeats and translocate into the nucleus. Caspase mediated cleavage of huntingtin at Asp513 is associated with increased polyglutamine aggregate formation and toxicity. Phosphorylation of Ser434 by CDK5 protects against cleavage (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: The potassium/chloride cotransporter 2 (KCC2, SLC12A5) is a neuron-specific transport protein responsible for regulating the cotransport of potassium and chloride ions. KCC2 uses the energy of the electrochemical potassium gradient to export chloride ions from cells, therefore maintaining intracellular chloride ion concentrations in mature neurons (1,2). The intracellular concentration of chloride ions determines the neuronal response to the inhibitory neurotransmitter GABA and glycine. As a result, KCC2 can play a critical role in regulating neuronal excitability in mature central nervous system neurons (3-5). Altered KCC2 expression and reduced KCC2 activity can result in an increase in intracellular chloride ion concentrations and subsequent hyperexcitability of neuronal systems. Cases of aberrant KCC2 function are associated with neurological disorders, such as multiple forms of epilepsy, neuropathic pain, and schizophrenia (6-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Potassium channel tetramerization domain-containing protein 12 (KCTD12) belongs to the family of KCTD proteins, which also contains KCTD8, 12b, and 16. These proteins are auxiliary subunits of GABAB receptors (1). The principal subunit of the GABAB receptor is formed by two GABAB receptors, which bind to GABAB ligands, couple to G proteins to inhibit adenylate cyclase production, and gate ion channels (e.g., the GIRK channels) (2). The auxiliary subunits contribute to receptor desensitization. KCTD12 produces fast desensitization by uncoupling the βγ subunits of the G protein from their effector channels (3). Research studies indicate that KCTD12 represents a biomarker with diagnostic and prognostic potential for gastrointestinal stromal tumors (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The KiSS-1 receptor (KISS1R, GPR54) is a G protein-coupled receptor that inhibits cancer cell metastasis and plays a major role in gonadotropic axis physiology (1). The GPR54 protein was originally described as an orphan receptor homologous to the galanin receptor, and later identified as a receptor for amidated peptide products of the metastasis suppressor gene KiSS-1 (2,3). In humans, amidated kisspeptin ligands are produced predominantly in cells of the arcuate nucleus and preoptic area, with expression controlled by gonadal hormones (4). Research studies show that deletion of either the KiSS-1 receptor or KiSS-1 genes leads to hypogonadotropic hypogonadism, a disorder characterized by reduced levels of circulating testosterone and gonadotropins, as well as abnormal sexual maturation (5,6) The administration of kisspeptins potently stimulates gonadotropin secretion, indicating that KISS1R and kisspeptins play a major role in the physiology of the gonadotropic axis (7). Additional research demonstrates that KISS1R and kisspeptins inhibit metastasis in cancer cells by inhibiting cell motility (8). However, other studies indicate that increased expression of KISS1R and its ligands in human breast tumors correlates with higher tumor grade and metastatic potential, likely by engaging MMP-9 activation via transactivation of EGFR (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Kv4.2 is a voltage-gated potassium channel that belongs to the Shal-related subfamily. Kv4.2 mediates K+ transport in excitable membranes primarily in the brain, where it regulates neuronal excitability, synaptic plasticity, and the circadian rhythm of locomotor activity (1-6). In rodent heart, Kv4.2 mediates the transient outward current (Ito), which contributes to early repolarization and the cardiac action potential (7). Kv4.2 can form homotetramers or heterotetramers with other members of the Shal-related subfamily. Interaction with modulating β subunits such as KChIP family proteins modulates Kv4.2 expression at cell surface and its channel activity (8-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The voltage gated potassium channel Kv7.2 (KCNQ2) associates with its family member Kv7.3 (KCNQ3) to form an M-channel that is involved in synaptic input response and sub-threshold excitability of neurons (1). This heteromeric channel generates the M-current, a slowly activating and deactivating potassium conductance that determines the neuronal excitability (2,3). Expression of these two M-channel proteins is mainly seen within the central nervous system, with both Kv7.2 and Kv7.3 expressed post-synaptically in the human cortex and hippocampus (4). The calcium-binding protein calmodulin binds two separate sites in Kv7.2 to influence exit of the channel protein from the endoplasmic reticulum and translocation to the plasma membrane (5). Mutations in the corresponding KCNQ2 gene cause benign familial neonatal seizures-1 (BFNS1), an autosomal dominant form of epilepsy characterized by seizure clusters closely following birth (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: LMO4 is a LIM zinc-binding domain-containing protein. LMO4 cDNA was first isolated from a breast tumor cDNA library (1). This transcriptional modulator is overexpressed in several epithelial cancers such as prostate, pancreas, and breast (2-4). LMO4 exhibits pro-oncogenic activities by inducing centrosome amplification and mitotic spindle abnormalities (5). LMO4 is also expressed in the brain, in regions involved in learning and the regulation of motivated behavior. In the basolateral amygdala, LMO4 functions to negatively regulate fear learning (6). Furthermore, in the nucleus accumbens, LMO4 was found to regulate the behavioral effects of cocaine (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Parkinson’s disease (PD), the second most common neurodegenerative disease after Alzheimer’s, is a progressive movement disorder characterized by rigidity, tremors, and postural instability. The pathological hallmarks of PD are progressive loss of dopaminergic neurons in the substantia nigra of the ventral midbrain and the presence of intracellular Lewy bodies (protein aggregates of α-synuclein, ubiquitin, and other components) in surviving neurons of the brain stem (1). Research studies have shown various genes and loci are genetically linked to PD including α-synuclein/PARK1 and 4, parkin/PARK2, UCH-L1/PARK5, PINK1/PARK6, DJ-1/PARK7, LRRK2/PARK8, synphilin-1, and NR4A2 (2).Leucine-rich repeat kinase 2 (LRRK2) contains amino-terminal leucine-rich repeats (LRR), a Ras-like small GTP binding protein-like (ROC) domain, an MLK protein kinase domain, and a carboxy-terminal WD40 repeat domain. Research studies have linked at least 20 LRRK2 mutations to PD, with the G2019S mutation being the most prevalent (3). The G2019S mutation causes increased LRRK2 kinase activity, which induces a progressive reduction in neurite length that leads to progressive neurite loss and decreased neuronal survival (4). Researchers are currently testing the MLK inhibitor CEP-1347 in PD clinical trials, indicating the potential value of LRRK2 as a therapeutic target for treatment of PD (5).