20% off purchase of 3 or more products* | Learn More >>

Product listing: Phospho-HSP90α (Thr5/7) Antibody, UniProt ID P07900 #3488 to 16% Formaldehyde, Methanol-Free #12606

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: HSP70 and HSP90 are molecular chaperones expressed constitutively under normal conditions to maintain protein homeostasis and are induced upon environmental stress (1). Both HSP70 and HSP90 are able to interact with unfolded proteins to prevent irreversible aggregation and catalyze the refolding of their substrates in an ATP- and co-chaperone-dependent manner (1). HSP70 has a broad range of substrates including newly synthesized and denatured proteins, while HSP90 tends to have a more limited subset of substrates, most of which are signaling molecules. HSP70 and HSP90 often function collaboratively in a multi-chaperone system, which requires a minimal set of co-chaperones: HSP40, Hop, and p23 (2,3). The co-chaperones either regulate the intrinsic ATPase activity of the chaperones or recruit chaperones to specific substrates or subcellular compartments (1,4). When the ubiquitin ligase CHIP associates with the HSP70/HSP90 complex as a cofactor, the unfolded substrates are subjected to degradation by the proteasome (4). The biological functions of HSP70/HSP90 extend beyond their chaperone activity. They are essential for the maturation and inactivation of nuclear hormones and other signaling molecules (1,3). They also play a role in vesicle formation and protein trafficking (2).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation but has also been associated with a number of physiological processes including development, differentiation, neurodegeneration, infection, and cancer (3). Syntaxin 17/STX17 is a SNARE factor recruited to autophagosomes and required for autophagosome fusion to lysosomes. Syntaxin 17 interacts with SNAP29 (Qbc-SNARE synaptosome-associated protein 29) and the lysosomal factor VAMP8 (R-SNARE vesicle-associated membrane protein 8), as well as BRUCE, an inhibitor of apoptosis (IAP) protein, which is also involved in autophagosome/lysosome fusion (4,5).Syntaxin 17 promotes initiation of PINK1/Parkin-independent mitophagy, which is regulated by depletion of the mitochondrial outer membrane protein Fis1 (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Protein kinase R (PKR) is transcriptionally induced by interferon and activated by double-stranded RNA (dsRNA). PKR inhibits translation initiation through phosphorylation of the α subunit of the initiation factor eIF2 (eIF2α) and also controls the activation of several transcription factors, such as NF-κB, p53, and the Stats. In addition, PKR mediates apoptosis induced by many different stimuli, such as LPS, TNF-α, viral infection, and serum starvation (1,2). Activation of PKR by dsRNA results in PKR dimerization and autophosphorylation of Thr446 and Thr451 in the activation loop. Substitution of threonine for alanine at position 451 completely inactivated PKR, while a mutant with a threonine to alanine substitution at position 446 was partially active (3). Research studies have implicated PKR activation in the pathologies of neurodegenerative diseases, including Alzheimer's disease (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein kinase R (PKR) is transcriptionally induced by interferon and activated by double-stranded RNA (dsRNA). PKR inhibits translation initiation through phosphorylation of the α subunit of the initiation factor eIF2 (eIF2α) and also controls the activation of several transcription factors, such as NF-κB, p53, and the Stats. In addition, PKR mediates apoptosis induced by many different stimuli, such as LPS, TNF-α, viral infection, and serum starvation (1,2). Activation of PKR by dsRNA results in PKR dimerization and autophosphorylation of Thr446 and Thr451 in the activation loop. Substitution of threonine for alanine at position 451 completely inactivated PKR, while a mutant with a threonine to alanine substitution at position 446 was partially active (3). Research studies have implicated PKR activation in the pathologies of neurodegenerative diseases, including Alzheimer's disease (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Rab10 is a member of the Ras superfamily of small Rab GTPases (1) that interacts with Mss4, myosin V (Va, Vb and Vc) and GDI as it helps mediate sorting among cellular endosomes (2-4). Mutation analysis and GFP-fusion protein expression of Rab10 in MDCK cells determined that Rab10 plays a regulatory role in membrane protein transport between early endosomes and basolateral compartments (5,6). Rab10 associates with the GLUT4 complex as a target for AS160 and is required for insulin-stimulated GLUT4 translocation in adipocytes (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rab11a, Rab11b and Rab25 are members of the Rab11 family of small Ras-like GTPases. Rab11 (isoforms Rab11a and Rab11b) functions as a key regulator in the recycling of perinuclear, plasma membrane and Golgi compartment endosomes (1,2). Despite some overlap, distinct differences exist between Rab11a and Rab11b in both their cellular distribution and functional roles. Rab11a is ubiquitously expressed while Rab11b is found mainly in the heart and brain (3,4). Like other Rab proteins, Rab11 exerts its function via interactions with Rab11 family interacting proteins (FIPs). While there are three distinct classes of FIPs, all appear to share a conserved carboxy-terminal Rab-binding domain that allows Rab-FIP protein interaction. When bound together, these proteins are thought to regulate membrane-associated protein sorting (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Rab11a, Rab11b and Rab25 are members of the Rab11 family of small Ras-like GTPases. Rab11 (isoforms Rab11a and Rab11b) functions as a key regulator in the recycling of perinuclear, plasma membrane and Golgi compartment endosomes (1,2). Despite some overlap, distinct differences exist between Rab11a and Rab11b in both their cellular distribution and functional roles. Rab11a is ubiquitously expressed while Rab11b is found mainly in the heart and brain (3,4). Like other Rab proteins, Rab11 exerts its function via interactions with Rab11 family interacting proteins (FIPs). While there are three distinct classes of FIPs, all appear to share a conserved carboxy-terminal Rab-binding domain that allows Rab-FIP protein interaction. When bound together, these proteins are thought to regulate membrane-associated protein sorting (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Mouse, Rat

Application Methods: Western Blotting

Background: Rab11a, Rab11b and Rab25 are members of the Rab11 family of small Ras-like GTPases. Rab11 (isoforms Rab11a and Rab11b) functions as a key regulator in the recycling of perinuclear, plasma membrane and Golgi compartment endosomes (1,2). Despite some overlap, distinct differences exist between Rab11a and Rab11b in both their cellular distribution and functional roles. Rab11a is ubiquitously expressed while Rab11b is found mainly in the heart and brain (3,4). Like other Rab proteins, Rab11 exerts its function via interactions with Rab11 family interacting proteins (FIPs). While there are three distinct classes of FIPs, all appear to share a conserved carboxy-terminal Rab-binding domain that allows Rab-FIP protein interaction. When bound together, these proteins are thought to regulate membrane-associated protein sorting (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Rab11a, Rab11b, and Rab25 are members of the Rab11 subfamily of small Ras-like GTPases. Unlike universally expressed Rab11, typical Rab25 expression appears to be limited to gastrointestinal mucosa, kidney, and lung (1). Rab25 can associate with apical recycling vesicles to help regulate apical vesicle trafficking (2,3). Research studies indicate that atypical Rab25 expression can be associated with various forms of cancer. Increased Rab25 expression is associated with aggressive growth in ovarian and breast cancer, where Rab25 may inhibit apoptosis and promote cancer cell proliferation and invasion through regulation of vesicle transport and cellular motility (4-7). Interaction between Rab25 and β1 integrin promotes vesicle-mediated transport of integrin to pseudopodial tip membranes, fostering the persistent invasion of tumor cells (8). Conversely, the reported loss of Rab25 expression in a number of breast cancer cases has an unclear effect on cancer pathogenesis (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The Rab family of proteins includes small, monomeric GTPases essential for regulating intracellular vesicle trafficking. Members of the Rab3 subfamily, including Rab3A-3D, are involved in the exocytosis of neurotransmitters and hormones (1). Rab3A is primarily expressed in neurons (2), neuroendocrine cells (such as rat PC-12 cells), and in human pancreatic β cells (3,4). By acting as a molecular switch between active GTP-bound Rab3A and the inactive GDP-bound form, Rab3A inhibits synaptic vesicle and chromaffin granule secretion during late membrane release (5,6). Loss-of-function studies suggest Rab3A is involved in controlling synaptic vesicle targeting and docking at the active zone (7). Through binding to its direct effector Rabphillin, Rab3A also orchestrates the coupling between synaptic vesicle exocytosis and endocytosis (8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rab4 is a member of the Ras superfamily of small Rab GTPases implicated in endocytosis. Rab4 is localized at early endosomes/recycling endosomes and functions as a key regulator for sorting/recycling of membrane and proteins (1,2). Rab4 has two isoforms, Rab4A and Rab4B, both of which are localized in similar cellular compartments and are believed to have similar functions (4). Rab4 interacts with several Rab4 effectors in a complex on a special endosome site that promotes membrane/protein recycling (1,3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Rab5 is a member of the Ras superfamily of small Rab GTPases. Rab5 is localized at the plasma membrane and early endosomes and functions as a key regulator of vesicular trafficking during early endocytosis (1). The conformational change between Rab5 GTP/GDP states is essential for its biological function as a rate limiting regulator at multiple steps during endocytosis (1,2). Rab5 exerts its function by interacting with several Rab5-specific effectors (1-3). These proteins form complexes with Rab5 on a specialized Rab domain of the endosome and promote recycling of Rab5-cargo targets between endosome and the plasma membrane.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Rab6 is a member of the Ras superfamily of small Rab GTPases implicated in endocytosis (1). The three distinct members of the Rab6 subfamily (Rab6A, Rab6A', and Rab6B) are structurally similar but likely exhibit non-overlapping functions (2,3). Rab6 localized to the Golgi (4) regulates retrograde transport of membrane-bound target proteins from the Golgi apparatus to the endoplasmic reticulum (5-7) or from the Golgi to the endosome during exocytotic transport (8). Rab6 interacts with microtubule motor proteins such as rabkinesin-6 (KIF20A) and dynein/dynactin complexes; Rab6-mediated transport requires a functionally intact microtubule system (9,10). Rab6 also regulates cytokinesis and cell cycle check point through interactions with Rab6 effector proteins, including the dynein/dynactin protein DCTN1 and the GTPase activating protein RABGAP1 (11,12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Rab7 and Rab9 are members of the Ras superfamily of small Rab GTPases (1). Both proteins are located in late endosomes, but exert different functions. Rab7 associates with the RIPL effector protein to control membrane trafficking from early to late endosome and to lysosomes (2,3). Rab7 also helps to regulate growth receptor endocytic trafficking and degradation (3,4), and maturation of phagosome and autophagic vacuoles (4-6). Rab9 interacts with its effector proteins p40 and TIP47 (7,8) to promote the MPR (mannose 6-phosphate receptor)-associated lysosomal enzyme transport between late endosomes and the trans Golgi network (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: SGTA, small glutamine-rich tetratricopeptide repeat-containing protein A, is an ubiquitously expressed co-chaperone that binds directly to HSC70 and HSP70 and regulates their ATPase activity (1,2). SGTA is a 34 kDa protein that is rich in glutamine residues at its C terminus and contains three tandemly repeated TPR motifs (3). The TPR domain of SGTA shows sequence similarity to the TPR domains of Hop, CHIP, and TOM70 (4). The TPR domain of SGTA also interacts with HSP90 and was recently found to be a pro-apoptotic factor (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: SNIP (SNAP25-interacting protein)/p140Cap (p130Cas-associated protein) is a cytoskeleton-associated protein identified initially in rat as a protein interacting with the brain-specific synaptosome protein SNAP25 (1) and subsequently as interacting with the broadly expressed scaffold protein p130Cas (2). SNAP25, a presynaptic protein implicated in neurotransmitter secretion, membrane fusion and neurite outgrowth, is part of the SNARE complex that includes syntaxin and synaptobrevin/VAMP (3). SNIP-SNAP25 association is mediated by coiled-coil interactions (1). Overexpression of SNIP inhibits calcium-dependent exocytosis in PC12 cells (1). Human and mouse orthologs of SNIP, termed p140Cap, were subsequently identified through association with p130Cas, a substrate of v-Src and v-Crk that is tyrosine-phosphorylated in response to cell adhesion and mitogenic stimuli (2,4,5). Expression of p140Cap was observed in brain, testis and epithelial-rich tissues and may exist in various alternatively spliced, tissue-specific isoforms (2). p140Cap is also tyrosine-phosphoryalated in response to adhesion molecules and EGF treatment (2). Together these studies suggest a role for SNIP/p140Cap in controlling cell spreading, migration and neurosecretion.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Signal Transducing Adaptor Molecule 1 (STAM1) is a ubiquitously expressed adaptor protein containing an SH3 domain and an ITAM motif. Initial research studies demonstrated that STAM1 undergoes tyrosine phosphorylation following treatment with numerous cytokines and growth factors (1). Subsequent research studies identified STAM1 as a component of the ESCRT-0 complex, which mediates the endocytic sorting of ubiquitinated membrane proteins to the lysosomal compartment for degradation (2). STAM1 harbors a tandemly-oriented VHS (Vps27/Hrs/STAM) domain and UIM (ubiquitin-interacting motif) that facilitates STAM1 binding to ubiquitinated cargo proteins within the endosomal compartment (3,4). Gene targeting studies have revealed that STAM1 and STAM2 cooperate to promote thymic T-cell development and survival (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Signal transducing adaptor molecule 2 (STAM2) is a ubiquitously expressed STAM family adaptor protein and an integral component of the ESCRT-0 complex. Similar to STAM1, STAM2 possesses a single SH3 domain and an immunoreceptor tyrosine-based activation motif (ITAM). Following activation of multiple growth factor and cytokine cell surface receptors, the STAM2 protein undergoes tyrosine phosphorylation and potentiates mitogenic signals driven by these receptors (1,2). Research studies demonstrate that STAM2 is localized to complexes containing Eps15, Hrs, and STAM1 proteins on early endosome membranes. A tandem, amino-terminal VHS (Vps27/Hrs/STAM) domain and UIM (ubiquitin-interacting) motif within STAM2 facilitate STAM2 interaction with ubiquitinated cargo proteins, suggesting that this adaptor participates in the endosomal sorting of ubiquitinated proteins targeted for lysosomal degradation (3-6). Gene targeting studies have revealed an indispensible role for STAM2 in T-cell development (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The membrane protein syntaxin 5 (STX5) is a key component of soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) complexes that regulate cellular protein transport, vesicle docking, and membrane fusion (1). Syntaxin 5 protein is found as a 42 kDa ("long") protein localized to the Golgi complex and endoplasmic reticulum, and a “short” 35 kDa isoform localized primarily to the Golgi (2,3). Formation of the syntaxin 5 SNARE complex, which also includes proteins Sec22B, Bet1, GOSR1, GOSR2, and Ykt6, allows for regulation of ER-to-Golgi transport, intra-Golgi transport, and endosome-to-Golgi retrograde transport (4-6). Research studies indicate that the syntaxin 5 SNARE complex also plays an essential role in autophagy following autophagosome formation. Intracellular protein transport mediated by the syntaxin 5 complex is required for transport and localized activity of lysosomal proteases. The experimental reduction or deletion of syntaxin 5 complex components results in non-functional lysosomes and accumulation of autophagosomes (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Proteins in the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex are integral membrane proteins involved in vesicle transport and membrane fusion by pairing of vesicular SNAREs (v-SNAREs) with cognate target SNAREs (t-SNAREs) (reviewed in 1,2). Vesicle associated membrane protein 8 (VAMP8), also known as endobrevin, is a v-SNARE originally found preferentially localized to early endosomes (3). VAMP8 knockout mice did not show abnormal endosomal vesicular trafficking, perhaps having a redundant role with other VAMP family members (4). Instead, research studies have shown that VAMP8 is widely expressed in exocrine tissues and has a critical role in the exocytosis pathways of a variety of cells (4-9). In addition, lysosome localized VAMP8 has been shown to play a role in autophagosome/lysosome fusion during antimicrobial (xenophagy) and canonical starvation induced autophagy (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Vacuolar protein sorting-associated protein 26A (VPS26A), together with VPS29 and VPS35, is part of a trimeric protein complex known as the cargo-selective complex (CSC) (1). The CSC is regarded as the core functional component of the retromer, a multimeric protein complex involved in selective transport of cargo proteins from endosomes to the trans-Golgi network or plasma membrane (2). As part of the CSC, VPS26A does not have intrinsic membrane-binding activity but relies on association with RAB7A for recruitment to the cytosolic face of the endosomal membrane (3,4). Retromer defects are associated with neurological disease, and VPS26A mutations have been linked to perturbed endosomal cargo sorting in atypical parkinsonism (5).

The Rab Family Antibody Sampler Kit provides an economical means to evaluate the presence and status of Rab proteins in cells. This kit provides enough primary and secondary antibodies to perform two Western blot experiments per primary antibody.
$262
50-100 transfections
300 µl
SignalSilence® HSP27 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit HSP27 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Heat shock protein (HSP) 27 is one of the small HSPs that are constitutively expressed at different levels in various cell types and tissues. Like other small HSPs, HSP27 is regulated at both the transcriptional and posttranslational levels (1). In response to stress, the HSP27 expression increases several-fold to confer cellular resistance to the adverse environmental change. HSP27 is phosphorylated at Ser15, Ser78, and Ser82 by MAPKAPK-2 as a result of the activation of the p38 MAP kinase pathway (2,3). Phosphorylation of HSP27 causes a change in its tertiary structure, which shifts from large homotypic multimers to dimers and monomers (4). It has been shown that phosphorylation and increased concentration of HSP27 modulates actin polymerization and reorganization (5,6).

$262
3 nmol
300 µl
SignalSilence® HSP27 siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit HSP27 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Heat shock protein (HSP) 27 is one of the small HSPs that are constitutively expressed at different levels in various cell types and tissues. Like other small HSPs, HSP27 is regulated at both the transcriptional and posttranslational levels (1). In response to stress, the HSP27 expression increases several-fold to confer cellular resistance to the adverse environmental change. HSP27 is phosphorylated at Ser15, Ser78, and Ser82 by MAPKAPK-2 as a result of the activation of the p38 MAP kinase pathway (2,3). Phosphorylation of HSP27 causes a change in its tertiary structure, which shifts from large homotypic multimers to dimers and monomers (4). It has been shown that phosphorylation and increased concentration of HSP27 modulates actin polymerization and reorganization (5,6).

$262
3 nmol
300 µl
SignalSilence® USP10 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit USP10 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Ubiquitinating enzymes (UBEs) catalyze protein ubiquitination, a reversible process countered by deubiquitinating enzyme (DUB) action (1,2). Five DUB subfamilies are recognized, including the USP, UCH, OTU, MJD, and JAMM enzymes. USP10 possesses amino acid sequences that match the consensus cysteine and histidine boxes representative of the USP family of deubiquitinating enzymes. At the posttranslational level, USP10 appears to be regulated through both protein-protein interactions and phosphorylation. Indeed, interaction of USP10 with Ras-GAP SH3 domain binding protein (G3BP) has been found to inhibit its ability to catalyze the disassembly of ubiquitin chains (3). Furthermore, ATM-mediated phosphorylation of USP10 at Thr42 and Ser337 was shown to promote USP10 stabilization and redistribution from the cytoplasm to the nucleus, where it functions in p53 deubiquitination, stabilization, and activation in response to genotoxic stress (4). Recently, it was shown that USP10 works in concert with USP13 and Vps34 complexes. USP10, along with USP13, appears to deubiquitinate Vps34 complexes to regulate the levels of this class III PI3K. Beclin-1, another component of these complexes, functions to regulate the stability of USP13, which can deubiquitinate and stabilize the levels of USP10. Therefore, Beclin-1, can indirectly regulate p53 stability by controlling the DUB activity of USP10 (5). USP10 also functions in the endosomal compartment, where it has been shown to deubiquitinate CFTR in order to enhance its endocytic recycling and cell surface expression (6,7).

The Vesicle Trafficking Antibody Sampler kit provides an economical means to analyze proteins involved in the intracellular transport of cargo proteins. This kit includes enough primary and secondary antibody to perform two western blot experiments.
$430
100 assays
1 Kit
The Annexin V-FITC Early Apoptosis Detection Kit enables researchers to identify early apoptotic cells within a cell population. Annexin V-FITC conjugated protein binds to cell surfaces expressing phosphatidylserine, an early apotosis marker. Cells stained with propidium iodide (PI), a non-cell-permeable DNA dye, indicate necrotic cells. Cells stained with both PI and annexin V-FITC demonstrate later stage apoptosis and early necrosis. This kit provides enough reagent to perform 100 assays, based on a 250 μl assay volume.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

$282
1000 assays (96 well format)
1 Kit
The XTT Cell Viability Assay Kit is a colorimetric assay that detects the cellular metabolic activities. During the assay, the yellow tetrazolium salt XTT is reduced to a highly colored formazan dye by dehydrogenase enzymes in metabolically active cells. This conversion only occurs in viable cells and thus, the amount of the formazan produced is proportional to viable cells in the sample. The formazan dye formed in the assay is soluble in aqueous solution and can be quantified by measuring the absorbance at wavelength 450 nm using a spectrophotometer. An electron coupling reagent, such as PMS (N-Methylphenazonium methyl sulfate), can significantly improve the efficiency of XTT reduction in cells.
$29
5 x 1ml
5 ml
EDTA (Ethylenediaminetetraacetic acid) is a common laboratory chelating agent of divalent cations, such as Ca2+ and Mg2+. Ultrapure 0.5 M EDTA, pH 8.0 from Cell Signaling Technology contains no detectable DNase, RNase, or protease activity. The convenient 1 ml vials reduce the likelihood of contamination that can occur with larger volume containers. It is suitable for use in molecular biology or protein biochemistry applications that require the chelation of divalent metal cations.This product is used in our SimpleChip® chromatin immunoprecipitation (ChIP) assays to stop the metal-dependant enzymatic digestion of cross-linked DNA by micrococcal nuclease once the reaction is complete. It can be added to cell lysis buffers for use as a metalloprotease inhibitor. Working concentrations are typically 1-5 mM in this application.
$73
5 x 10 ml
50 ml
Premium 16% (w/v) Formaldehyde from Cell Signaling Technology is used as a fixative agent for fluorescent immunocytochemical and flow cytometry assays. It is methanol-free, prepared from high quality paraformaldehyde, and packaged under an inert atmosphere of nitrogen.Each 10 ml solution is supplied in an amber glass vial with two access points, offering distinct advantages over pre-scored ampules. The screw cap allows for easy access to large volumes if necessary. To extend the product's shelf life, small volumes should be extracted by piercing the silicone top with a needle and syringe.
APPLICATIONS

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)