Microsize antibodies for $99 | Learn More >>

Product listing: SimpleChIP® Mouse PITX3 Intron 1 Primers, UniProt ID O35160 #8984 to Anti-mouse IgG, HRP-linked Antibody #7076

$108
250 PCR reactions
500 µl
SimpleChIP® Mouse PITX3 Intron 1 Primers contain a mix of forward and reverse PCR primers that are specific to intron 1 of the mouse paired-like homeodomain transcription factor 3 (PITX3) gene. These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR® Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP® Enzymatic Chromatin IP Kits #9002 and #9003 and ChIP-validated antibodies from Cell Signaling Technology®. PITX3 is a developmental gene that contains both tri-methyl-histone H3 Lys4 and Lys27 in multiple cell types.
REACTIVITY
Mouse

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to either identify multiple proteins associated with a specific region of the genome or to identify the many regions of the genome bound by a particular protein (3-6). ChIP can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors, and DNA repair proteins. When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. Fragmented chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or quantitative real-time PCR are often used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing (ChIP-Seq), or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8). SimpleChIP® primers have been optimized for amplification of ChIP-isolated DNA using real-time quantitative PCR and provide important positive and negative controls that can be used to confirm a successful ChIP experiment.

$108
250 PCR reactions
500 µl
SimpleChIP® Mouse RPL30 Intron 2 Primers contain a mix of forward and reverse PCR primers that are specific to intron 2 of the mouse RPL30 gene. These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR® Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP® Enzymatic Chromatin IP Kits #9002 and #9003 and ChIP-validated antibodies from Cell Signaling Technology®. The RPL30 gene is actively transcribed in all cell types and its promoter is highly enriched for histone modifications associated with active transcription, such as histone H3 Lys4 tri-methylation and general histone acetylation. This gene promoter shows very low levels of histone modifications associated with heterochromatin, such as histone H3 Lys9 and Lys27 tri-methylation.
REACTIVITY
Mouse

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to either identify multiple proteins associated with a specific region of the genome or to identify the many regions of the genome bound by a particular protein (3-6). ChIP can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors, and DNA repair proteins. When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. Fragmented chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or quantitative real-time PCR are often used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing (ChIP-Seq), or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8). SimpleChIP® primers have been optimized for amplification of ChIP-isolated DNA using real-time quantitative PCR and provide important positive and negative controls that can be used to confirm a successful ChIP experiment.

$108
250 PCR reactions
500 µl
SimpleChIP® Mouse SLA2 Promoter Primers contain a mix of forward and reverse PCR primers that are specific to a region of the mouse SRC-Like Adaptor 2 (SLA2) promoter. These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR® Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP® Enzymatic Chromatin IP Kits #9002 and #9003 and ChIP-validated antibodies from Cell Signaling Technology®.
REACTIVITY
Mouse

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to either identify multiple proteins associated with a specific region of the genome or to identify the many regions of the genome bound by a particular protein (3-6). ChIP can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors, and DNA repair proteins. When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. Fragmented chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or quantitative real-time PCR are often used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing (ChIP-Seq), or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8). SimpleChIP® primers have been optimized for amplification of ChIP-isolated DNA using real-time quantitative PCR and provide important positive and negative controls that can be used to confirm a successful ChIP experiment.

$108
250 PCR reactions
500 µl
SimpleChIP® Mouse Sox2 Exon1 Primers contain a mix of forward and reverse PCR primers that are specific to exon1 of the mouse SRY-box containing gene 2 (Sox2). These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR® Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP® Enzymatic Chromatin IP Kits #9004 and #9005 and ChIP-validated antibodies from Cell Signaling Technology®.
REACTIVITY
Mouse

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to either identify multiple proteins associated with a specific region of the genome or to identify the many regions of the genome bound by a particular protein (3-6). ChIP can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors, and DNA repair proteins. When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. Fragmented chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or quantitative real-time PCR are often used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing (ChIP-Seq), or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8). SimpleChIP® primers have been optimized for amplification of ChIP-isolated DNA using real-time quantitative PCR and provide important positive and negative controls that can be used to confirm a successful ChIP experiment.

$108
250 PCR reactions
500 µl
SimpleChIP® Mouse TULP4 Promoter Primers contain a mix of forward and reverse PCR primers that are specific to a region of the mouse tubby like protein 4 (TULP4) promoter. These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR® Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP® Enzymatic Chromatin IP Kits #9004 and #9005 and ChIP-validated antibodies from Cell Signaling Technology®.
REACTIVITY
Mouse

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to either identify multiple proteins associated with a specific region of the genome or to identify the many regions of the genome bound by a particular protein (3-6). ChIP can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors, and DNA repair proteins. When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. Fragmented chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or quantitative real-time PCR are often used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing (ChIP-Seq), or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8). SimpleChIP® primers have been optimized for amplification of ChIP-isolated DNA using real-time quantitative PCR and provide important positive and negative controls that can be used to confirm a successful ChIP experiment.

$108
250 PCR reactions
500 µl
SimpleChIP® Mouse TXNIP Promoter Primers contain a mix of forward and reverse PCR primers that are specific to a region of the mouse thioredoxin interacting protein (TXNIP) promoter. These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR® Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP® Enzymatic Chromatin IP Kits #9002 and #9003 and ChIP-validated antibodies from Cell Signaling Technology®.
REACTIVITY
Mouse

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to either identify multiple proteins associated with a specific region of the genome or to identify the many regions of the genome bound by a particular protein (3-6). ChIP can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors, and DNA repair proteins. When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. Fragmented chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or quantitative real-time PCR are often used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing (ChIP-Seq), or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8). SimpleChIP® primers have been optimized for amplification of ChIP-isolated DNA using real-time quantitative PCR and provide important positive and negative controls that can be used to confirm a successful ChIP experiment.

$108
250 PCR reactions
500 µl
SimpleChIP® Mouse USP31 Promoter Primers contain a mix of forward and reverse PCR primers that are specific to a region of the mouse ubiquitin specific peptidase 31 (USP31) promoter. These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR® Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP® Enzymatic Chromatin IP Kits #9002 and #9003 and ChIP-validated antibodies from Cell Signaling Technology®.
REACTIVITY
Mouse

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to either identify multiple proteins associated with a specific region of the genome or to identify the many regions of the genome bound by a particular protein (3-6). ChIP can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors, and DNA repair proteins. When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. Fragmented chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or quantitative real-time PCR are often used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing (ChIP-Seq), or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8). SimpleChIP® primers have been optimized for amplification of ChIP-isolated DNA using real-time quantitative PCR and provide important positive and negative controls that can be used to confirm a successful ChIP experiment.

$108
250 PCR reactions
500 µl
SimpleChIP® Mouse XIST Intron 1 Primers contain a mix of forward and reverse PCR primers that are specific to intron 1 of the mouse XIST gene. These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR® Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP® Enzymatic Chromatin IP Kits #9002 and #9003 and ChIP-validated antibodies from Cell Signaling Technology®. The XIST gene is active in stem cells and is responsible for random X-inactivation in females. It is regulated in stem cells by the stem cell master regulators Oct-4, Sox2 and Nanog.
REACTIVITY
Mouse

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to either identify multiple proteins associated with a specific region of the genome or to identify the many regions of the genome bound by a particular protein (3-6). ChIP can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors, and DNA repair proteins. When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. Fragmented chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or quantitative real-time PCR are often used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing (ChIP-Seq), or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8). SimpleChIP® primers have been optimized for amplification of ChIP-isolated DNA using real-time quantitative PCR and provide important positive and negative controls that can be used to confirm a successful ChIP experiment.

$108
250 PCR reactions
500 µl
SimpleChIP® Rat CCRN4L Promoter Primers contain a mix of forward and reverse PCR primers that are specific to a region of the rat Carbon Catabolite Repression 4-Like (CCRN4L) promoter. These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR® Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP® Enzymatic Chromatin IP Kits #9002 and #9003 and ChIP-validated antibodies from Cell Signaling Technology®. CCRN4L is a circadian rhythm deadenylase that acts downstream of Clock and Bmal1 to stabilize circadian-related mRNA transcripts.
REACTIVITY
Rat

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to either identify multiple proteins associated with a specific region of the genome or to identify the many regions of the genome bound by a particular protein (3-6). ChIP can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors, and DNA repair proteins. When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. Fragmented chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or quantitative real-time PCR are often used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing (ChIP-Seq), or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8). SimpleChIP® primers have been optimized for amplification of ChIP-isolated DNA using real-time quantitative PCR and provide important positive and negative controls that can be used to confirm a successful ChIP experiment.

$108
250 PCR reactions
500 µl
SimpleChIP® Rat GAPDH Promoter Primers contain a mix of forward and reverse PCR primers that are specific to a region of the rat glyceraldehyde-3-phosphate dehydrogenase (GAPDH) promoter. These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR® Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP® Enzymatic Chromatin IP Kits #9002 and #9003 and ChIP-validated antibodies from Cell Signaling Technology®. The GAPDH gene is actively transcribed in all cell types and its promoter is highly enriched for histone modifications associated with active transcription, such as histone H3 Lys4 tri-methylation and general histone acetylation. This gene promoter shows very low levels of histone modifications associated with heterochromatin, such as histone H3 Lys9 or Lys27 tri-methylation.
REACTIVITY
Rat

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to either identify multiple proteins associated with a specific region of the genome or to identify the many regions of the genome bound by a particular protein (3-6). ChIP can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors, and DNA repair proteins. When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. Fragmented chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or quantitative real-time PCR are often used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing (ChIP-Seq), or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8). SimpleChIP® primers have been optimized for amplification of ChIP-isolated DNA using real-time quantitative PCR and provide important positive and negative controls that can be used to confirm a successful ChIP experiment.

The KinomeView® Profiling Kit provides a set of Phospho-Motif Antibodies that cover a large portion of the kinome and react broadly with serine, threonine, and tyrosine phosphorylation mediated by diverse kinase families throughout the kinome. This kit will provide researchers with an immunoblotting strategy to dissect the complexity of the phosphoproteome and determine the kinase families involved in the regulation of diverse physiological processes. By using the provided Phospho-motif Antibodies, the investigator can assess global changes in protein phosphorylation by western analysis across a range of experimental samples and conditions.
PTMScan® IAP Buffer is used to reconstitute lyophilized peptides prior to immunoaffinity purification (IAP).
C18 Reversed-phase solid phase extraction columns are useful tools for purifying and desalting peptides in preparation for PTMScan protocols and other mass spectrometry applications.
$64
15 ml
RIPA buffer is used to lyse cells and tissues.
APPLICATIONS

Application Methods: Western Blotting

$251
100 µl
APPLICATIONS

Application Methods: Peptide ELISA (DELFIA), Western Blotting

Background: Biotin is a water-soluble B complex vitamin (vitamin H or B7) that serves as a coenzyme in various metabolic functions. It transfers carbon dioxide for five carboxylase enzymes and is involved in the TCA cycle and gluconeogenesis. In addition, all cells require biotin for cell proliferation, production of fatty acids, and metabolism of fats and amino acids (1). Biotin recycling and attachment to histone proteins is catalyzed by an enzyme named biotinidase. Histone biotinylation is involved in regulating telomere attrition and cellular senescence. Biotinidase deficiency is a rare genetic disorder that can cause neurological and cutaneous symptoms if left untreated (2). Biotin has a high affinity for its natural ligand, avidin. The complex and irregular structure of the biotin-binding site makes it highly optimized for biotin binding and confers great specificity to the avidin-biotin complexes (3). This remarkable affinity has been exploited for numerous immunoassays including ELISA, Flow Cytometry, Immunofluorescence, In Situ Hybridization, Affinity Chromatography, and Immunohistochemistry. Anti-Biotin (D5A7) Rabbit mAb can be used as an alternative to avidins in order to minimize background and maximize signal intensity.

$131
1 ml
Anti-biotin (D5A7) Rabbit mAb is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. This product has been optimized to detect biotinylated primary antibodies. HRP conjugated antibodies do not require incubation with a secondary antibody. *Do not mix this antibody in solution with any Anti-rabbit antibody. Anti-rabbit antibodies will cross react with this antibody and could result in decreased activity of both Anti-rabbit and Anti-biotin (D5A7) Rabbit mAb.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Peptide ELISA (DELFIA), Western Blotting

Background: Chemiluminescence systems have emerged as the best all-around method for western blot detection. They eliminate the hazards associated with radioactive materials and toxic chromogenic substrates. The speed and sensitivity of these methods are unequalled by traditional alternatives, and because results are generated on film, it is possible to record and store data permanently. Blots detected with chemiluminescent methods are easily stripped for subsequent reprobing with additional antibodies. HRP-conjugated secondary antibodies are utilized in conjunction with specific chemiluminescent substrates to generate the light signal. HRP conjugates have a very high turnover rate, yielding good sensitivity with short reaction times.

$135
1 ml
Affinity purified goat anti-biotin antibody is conjugated to calf intestinal alkaline phosphatase. This product has been optimized for the detection of biotinylated protein molecular weight standards in western blotting applications.
APPLICATIONS

Application Methods: Western Blotting

Background: The alkaline phosphatase (AP) conjugated secondary antibodies are utilized in conjunction with specific chemiluminescent or other substrates for detection on western blots. One of the advantages of AP conjugation is that the reaction rate remains linear for a long period of time.

$135
1 ml
Affinity purified goat anti-biotin antibody is conjugated to horseradish peroxidase. This product has been optimized to detect biotinylated protein markers.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Western Blotting

Background: Chemiluminescence systems have emerged as the best all-around method for western blot detection. They eliminate the hazards associated with radioactive materials and toxic chromogenic substrates. The speed and sensitivity of these methods are unequalled by traditional alternatives, and because results are generated on film, it is possible to record and store data permanently. Blots detected with chemiluminescent methods are easily stripped for subsequent reprobing with additional antibodies. HRP-conjugated secondary antibodies are utilized in conjunction with specific chemiluminescent substrates to generate the light signal. HRP conjugates have a very high turnover rate, yielding good sensitivity with short reaction times.

$80
100 µl
$162
500 µl
Anti-mouse IgG (H+L) was conjugated to DyLight™ 680 fluorescent dye under optimal conditions and formulated at 1 mg/ml. Excitation is 684 nm and peak fluorescence emission is 715 nm.

Background: Near infrared anti-species IgG conjugates are ideal for fluorescent western blotting and In-Cell Western. Cell Signaling Technology's strict quality control procedures assure that each conjugate provides optimal specificity and fluorescence.

$80
100 µl
$162
500 µl
Anti-mouse IgG (H+L) was conjugated to DyLight™ 800 4X PEG fluorescent dye under optimal conditions and formulated at 1 mg/ml. Excitation is 777 nm and peak fluorescence emission is 794 nm.

Background: Near infrared anti-species IgG conjugates are ideal for fluorescent western blotting and In-Cell Western. Cell Signaling Technology's strict quality control procedures assure that each conjugate provides optimal specificity and fluorescence.

$142
1 ml
Affinity purified goat anti-mouse IgG (H+L) antibody is conjugated to biotin. This product has been optimized for use as a secondary antibody in western blotting applications.
APPLICATIONS

Application Methods: Western Blotting

$142
250 µl
Anti-Mouse IgG (H+L) F(ab')2 Fragment antibody was conjugated to Alexa Fluor® 488 fluorescent dye under optimal conditions and formulated at 2 mg/ml. This F(ab')2 fragment product results in less non-specific binding, as it lacks the Fc domain that can bind to the cells with Fc receptors.
APPLICATIONS

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

$142
250 µl
Anti-Mouse IgG (H+L) F(ab')2 Fragment was conjugated to Alexa Fluor® 555 fluorescent dye under optimal conditions and formulated at 2 mg/ml. This F(ab')2 fragment product results in less non-specific binding, as it lacks the Fc domain that can bind to the cells with Fc receptors.
APPLICATIONS

Application Methods: Immunofluorescence (Immunocytochemistry)

$142
250 µl
Anti-mouse IgG (H+L), F(ab')2 Fragment was conjugated to Alexa Fluor® 594 fluorescent dye under optimal conditions and formulated at 2 mg/ml. This F(ab')2 fragment product results in less non-specific binding, as it lacks the Fc domain that can bind to the cells with Fc receptors.
APPLICATIONS

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

$142
250 µl
Anti-Mouse IgG (H+L) F(ab')2 Fragment was conjugated to Alexa Fluor® 647 fluorescent dye under optimal conditions and formulated at 2 mg/ml. This F(ab')2 fragment product results in less non-specific binding, as it lacks the Fc domain that can bind to the cells with Fc receptors.
APPLICATIONS

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

$199
250 µl
Anti-mouse IgG (H+L), F(ab')2 Fragment was conjugated to phycoerythrin (PE) under optimal conditions. This F(ab')2 fragment product results in less non-specific binding, as it lacks the Fc domain that can bind to the cells with Fc receptors.
APPLICATIONS

Application Methods: Flow Cytometry

$203
250 µl
Anti-mouse IgG (H+L), F(ab')2 Fragment was conjugated to phycoerythrin (PE) under optimal conditions and formulated at 1 mg/ml. This F(ab')2 fragment results in less non-specific binding to cells through Fc receptors.
APPLICATIONS

Application Methods: Flow Cytometry

$131
1 ml
This Cell Signaling Technology antibody is immobilized via covalent binding of primary amino groups to N-hydroxysuccinimide (NHS)-activated sepharose beads. Anti-mouse IgG (H+L), F(ab')2 Fragment (Sepharose Bead Conjugate) is useful for the immunoprecipitation of antibodies raised in mice.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation

$142
1 ml
Affinity purified goat anti-mouse IgG (H&L) antibody is conjugated to calf intestinal alkaline phosphatase. This product has been optimized for use as a secondary antibody in Western blotting and ELISA applications.
APPLICATIONS

Application Methods: ELISA, Western Blotting

Background: The alkaline phosphatase (AP) conjugated secondary antibodies are utilized in conjunction with specific chemiluminescent or other substrates for detection on western blots. One of the advantages of AP conjugation is that the reaction rate remains linear for a long period of time.

$76
100 µl
$142
1 ml
$452
5 ml
Affinity purified horse anti-mouse IgG (heavy and light chain) antibody is conjugated to horseradish peroxidase(HRP) for chemiluminescent detection.  This product is thoroughly validated with CST primary antibodies and will work optimally with the CST western immunoblotting protocol, ensuring accurate and reproducible results.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Western Blotting

Background: Chemiluminescence systems have emerged as the best all-around method for western blot detection. They eliminate the hazards associated with radioactive materials and toxic chromogenic substrates. The speed and sensitivity of these methods are unequalled by traditional alternatives, and because results are generated on film, it is possible to record and store data permanently. Blots detected with chemiluminescent methods are easily stripped for subsequent reprobing with additional antibodies. HRP-conjugated secondary antibodies are utilized in conjunction with specific chemiluminescent substrates to generate the light signal. HRP conjugates have a very high turnover rate, yielding good sensitivity with short reaction times.