Microsize antibodies for $99 | Learn More >>

Product listing: Tris-Glycine Transfer Buffer (10X) #12539 to Abi1 (D3G6C) Rabbit mAb, UniProt ID Q8IZP0 #39444

$51
1 liter
Tris-Glycine Transfer Buffer (10X) is used as a transfer buffer during western blotting. Product is shipped and stored at room temperature.1X Formulation: 25 mM Tris, 192 mM Glycine, 20% (v/v) methanol, pH ~8.3.Note: Methanol is not supplied but is required.
APPLICATIONS

Application Methods: Western Blotting

$109
200 ml
10X Wash Buffer, Phosphate Buffered Saline (PBS) is for use in immunfluorescence and flow cytometry assays. Cell Signaling Technology recommends using this wash buffer according to our protocols for IF and FLOW approved antibodies to ensure accurate and reproducible results.1X Wash Buffer contains 137 mM NaCl, 2.6 mM KCl, 10 mM Na2HPO4, 1.76 mM KH2PO4, 0.005% sodium azide, pH 8.0. The product is free of calcium and magnesium salts.
APPLICATIONS

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry)

The ALK Activation Antibody Sampler Kit provides an economical means to evaluate the activation status of multiple members of the ALK pathway, including phosphorylated ALK, Jak2, Jak3, Stat3, Stat5, PLCγ1, Akt, Src, and p44/42 MAPK. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor for pleiotrophin (PTN), a growth factor involved in embryonic brain development (1-3). In ALK-expressing cells, PTN induces phosphorylation of both ALK and the downstream effectors IRS-1, Shc, PLCγ, and PI3 kinase (1). ALK was originally discovered as a nucleophosmin (NPM)-ALK fusion protein produced by a translocation (4). Investigators have found that the NPM-ALK fusion protein is a constitutively active, oncogenic tyrosine kinase associated with anaplastic lymphoma (4). Research literature suggests that activation of PLCγ by NPM-ALK may be a crucial step for its mitogenic activity and involved in the pathogenesis of anaplastic lymphomas (5).A distinct ALK oncogenic fusion protein involving ALK and echinoderm microtubule-associated protein like 4 (EML4) has been described in the research literature from a non-small cell lung cancer (NSCLC) cell line, with corresponding fusion transcripts present in some cases of lung adenocarcinoma. The short, amino-terminal region of the microtubule-associated protein EML4 is fused to the kinase domain of ALK (6-8).

The Angiogenesis Antibody Sampler Kit provides an economical means to investigate the angiogenic pathway downstream of VEGFR2. The kit contains enough primary antibody to perform two western blots per primary antibody.
The Tyro/Axl/Mer Activation Sampler Kit provides an economical means of detecting the activation of TAM family members using phospho-specific and control antibodies. The kit includes enough antibodies to perform two western blot experiments with each primary antibody.

Background: Axl, Mer and Tyro3 are three members of the TAM family receptor tyrosine kinase that share a common NCAM (neural adhesion molecule)-related extracellular domain and a conserved intracellular tyrosine kinase domain. These receptors bind common homologous vitamin K dependent protein GAS6 and protein S to activate downstream signaling pathways (1). TAM family receptors are involved in the development of immune, nervous, vascular and reproductive systems, autoimmune disease, cancer drug resistance and tumor immunity response (2-5). Axl (Tyr698), Axl (Tyr702), Mer Tyr(749) and Tyro3 (Tyr681) are conserved autophosphorylation sites located in the activation loop of the respective tyrosine kinase domains. Phosphorylation at these sites is required for full kinase activation of each of the corresponding receptors (6,7).

The c-Kit Antibody Sampler Kit provides a fast and economical means of evaluating levels of c-Kit receptor protein phosphorylated at the specified sites, as well as total c-Kit receptor levels. The kit contains enough primary and secondary antibody to perform two Western blot experiments.

Background: c-Kit is a member of the subfamily of receptor tyrosine kinases that includes PDGF, CSF-1, and FLT3/flk-2 receptors (1,2). It plays a critical role in activation and growth in a number of cell types including hematopoietic stem cells, mast cells, melanocytes, and germ cells (3). Upon binding with its stem cell factor (SCF) ligand, c-Kit undergoes dimerization/oligomerization and autophosphorylation. Activation of c-Kit results in the recruitment and tyrosine phosphorylation of downstream SH2-containing signaling components including PLCγ, the p85 subunit of PI3 kinase, SHP2, and CrkL (4). Molecular lesions that impair the kinase activity of c-Kit are associated with a variety of developmental disorders (5), and mutations that constitutively activate c-Kit can lead to pathogenesis of mastocytosis and gastrointestinal stromal tumors (6). Tyr719 is located in the kinase insert region of the catalytic domain. c-Kit phosphorylated at Tyr719 binds to the p85 subunit of PI3 kinase in vitro and in vivo (7).

$118
10 western blots
150 µl
Nonphosphorylated EGF Receptor Control Cell Extracts: Total extracts from A431 cells, serum starved overnight to serve as a negative control. Supplied in SDS Sample Buffer.Phosphorylated EGF Receptor Control Cell Extracts: Total extracts from A431 cells, serum starved overnight and treated with 100 ng/ml hEGF #8916 for five minutes to serve as a positive control. Supplied in SDS Sample Buffer.
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).

Molecular Weight:315.76 g/mol

Background: Tyrphostin AG 1478 is a tyrosine kinase inhibitor specifically selective to EGFR (ErbB1), with an IC50 of about 3 nM in vitro (1,2). Treatment of cell with 50-150 nM of AG 1478 can substantially block EGFR activiation in vivo (3). In addition to EGFR, AG 1478 also inhibits ErbB4 activation induced by radiation in cancer cells (4). Testing of AG 1478 alone or in combination with other treatments to assess anti-tumor and anti-fibrotic effectiveness has yielded promising results (5-8).

$489
96 assays
1 Kit
The PathScan® Total HER3/ErbB3 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of HER3/ErbB3 protein. A HER3/ErbB3 mouse antibody has been coated on the microwells. After incubation with cell lysates, HER3/ErbB3 protein (phospho and nonphospho) is captured by the coated antibody. Following extensive washing, a HER3/ErbB3 rabbit antibody is added to detect captured HER3/ErbB3 protein. Anti-rabbit IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of HER3/ErbB3 protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: HER3/ErbB3 is a member of the ErbB receptor protein tyrosine kinase family, but it lacks tyrosine kinase activity. Tyrosine phosphorylation of ErbB3 depends on its association with other ErbB tyrosine kinases. Upon ligand binding, heterodimers form between ErbB3 and other ErbB proteins, and ErbB3 is phosphorylated on tyrosine residues by the activated ErbB kinase (1,2). There are at least 9 potential tyrosine phosphorylation sites in the carboxy-terminal tail of ErbB3. These sites serve as consensus binding sites for signal transducing proteins, including Src family members, Grb2, and the p85 subunit of PI3 kinase, which mediate ErbB downstream signaling (3). Both Tyr1222 and Tyr1289 of ErbB3 reside within a YXXM motif and participate in signaling to PI3K (4).Investigators have found that ErbB3 is highly expressed in many cancer cells (5) and activation of the ErbB3/PI3K pathway is correlated with malignant phenotypes of adenocarcinomas (6). Research studies have demonstrated that in tumor development, ErbB3 may function as an oncogenic unit together with other ErbB members (e.g. ErbB2 requires ErbB3 to drive breast tumor cell proliferation) (7). Thus, investigators view inhibiting interaction between ErbB3 and ErbB tyrosine kinases as a novel strategy for anti-tumor therapy.

$499
96 assays
1 Kit
The FastScan™ Phospho-EGF Receptor (Tyr1068) ELISA Kit is a sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of EGF Receptor when phosphorylated at Tyr1068. To perform the assay, sample is incubated with a capture antibody conjugated with a proprietary tag and a second detection antibody linked to HRP, forming a sandwich with phospho-EGF Receptor (Tyr1068) in solution. This entire complex is immobilized to the plate via an anti-tag antibody. The wells are then washed to remove unbound material. TMB is then added. The magnitude of observed signal is proportional to the quantity of phospho-EGF Receptor (Tyr1068). Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Monkey

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).

$499
96 assays
1 Kit
The FastScan™ Total EGF Receptor ELISA Kit is a sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of EGF Receptor. To perform the assay, sample is incubated with a capture antibody conjugated with a proprietary tag and a second detection antibody linked to HRP, forming a sandwich with EGF Receptor in solution. This entire complex is immobilized to the plate via an anti-tag antibody. The wells are then washed to remove unbound material. TMB is then added. The magnitude of observed signal is proportional to the quantity of EGF Receptor. Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Monkey

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).

The HER/ErbB Family Antibody Sampler Kit provides an economical means to evaluate the HER/ErbB Family, including the phosphorylation of EGFR, HER2/ErbB2, HER3/ErbB3, and HER4/ErbB4. The control antibodies to each family member are also included. The kit contains enough antibody to perform two western blot experiments with each primary antibody.
$320
100 µg
This peptide is used to block HER2/ErbB2 (29D8) Rabbit mAb #2165 reactivity in immunohistochemistry protocols.
APPLICATIONS

Application Methods: Immunohistochemistry (Paraffin)

Background: The ErbB2 (HER2) proto-oncogene encodes a 185 kDa transmembrane, receptor-like glycoprotein with intrinsic tyrosine kinase activity (1). While ErbB2 lacks an identified ligand, ErbB2 kinase activity can be activated in the absence of a ligand when overexpressed and through heteromeric associations with other ErbB family members (2). Amplification of the ErbB2 gene and overexpression of its product are detected in almost 40% of human breast cancers (3). Binding of the c-Cbl ubiquitin ligase to ErbB2 at Tyr1112 leads to ErbB2 poly-ubiquitination and enhances degradation of this kinase (4). ErbB2 is a key therapeutic target in the treatment of breast cancer and other carcinomas and targeting the regulation of ErbB2 degradation by the c-Cbl-regulated proteolytic pathway is one potential therapeutic strategy. Phosphorylation of the kinase domain residue Tyr877 of ErbB2 (homologous to Tyr416 of pp60c-Src) may be involved in regulating ErbB2 biological activity. The major autophosphorylation sites in ErbB2 are Tyr1248 and Tyr1221/1222; phosphorylation of these sites couples ErbB2 to the Ras-Raf-MAP kinase signal transduction pathway (1,5).

Each control slide contains formalin fixed, paraffin-embedded KYSE 450 cells, both untreated and treated with EGF, that serve as a control for Phospho-EGFR immunostaining. Western blot analysis was performed on extracts derived from the same cells to verify the efficacy of the EGF treatment.To be used with antibodies: 2235, 2237, 3777, 2236, 2234, 4404, 4407, 4267, 9411, 9417, 9416.

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).

Each control slide contains formalin-fixed and paraffin-embedded SK-BR-3 cells, untreated and EGF-treated, that can serve as a control for immunostaining. Western blot analysis was performed on extracts derived from the same cells to verify treatment efficacy.To be used with antibodies: 3777,4407, 4267, 2243, 4290, 2165, 2242, 4791.
Each control slide contains formalin fixed, paraffin-embedded MKN45 cells, both untreated and treated with the c-Met inhibitor SU11274, that serve as a control for Phospho-Met (Tyr1234/1235) immunostaining. Western blot analysis was performed on extracts derived from the same cells to verify the efficacy of the SU11274 treatment.To be used with antibodies: 3077.

Background: Met, a high affinity tyrosine kinase receptor for hepatocyte growth factor (HGF, also known as scatter factor) is a disulfide-linked heterodimer made of 45 kDa α- and 145 kDa β-subunits (1,2). The α-subunit and the amino-terminal region of the β-subunit form the extracellular domain. The remainder of the β-chain spans the plasma membrane and contains a cytoplasmic region with tyrosine kinase activity. Interaction of Met with HGF results in autophosphorylation at multiple tyrosines, which recruit several downstream signaling components, including Gab1, c-Cbl, and PI3 kinase (3). These fundamental events are important for all of the biological functions involving Met kinase activity. The addition of a phosphate at cytoplasmic Tyr1003 is essential for Met protein ubiquitination and degradation (4). Phosphorylation at Tyr1234/1235 in the Met kinase domain is critical for kinase activation. Phosphorylation at Tyr1349 in the Met cytoplasmic domain provides a direct binding site for Gab1 (5). Research studies have shown that altered Met levels and/or tyrosine kinase activities are found in several types of tumors, including renal, colon, and breast. Thus, investigators have concluded that Met is an attractive potential cancer therapeutic and diagnostic target (6,7).

$499
4 x 40 µl
1 Kit
The SignalStain® Phospho-ErbB Family IHC Sampler Kit from Cell Signaling Technology allows the researcher to examine paraffin-embedded tissues or cells with antibodies that will detect active ErbB 1, 2 and 3 as well as total epidermal growth factor receptor (EGFR). Each antibody is validated for use in immunohistochemical assays using multiple approaches. Also included in the kit are control slides that can be used to verify the performance of each antibody and a primary antibody diluent. See the table above for the recommended antibody diluent for each antibody provided in the kit.
APPLICATIONS

Application Methods: Immunohistochemistry (Paraffin)

The Met Signaling Antibody Sampler Kit provides an economical means to investigate Met signaling. The kit contains primary and secondary antibodies to perform two western blots with each antibody.
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Abi1, Abi2 and Abi3 are members of the Abl1 interactor family, which function as adaptor signaling molecules down stream of the receptor tyrosine kinase Ab1 (1-3). In addition to Abl, Abi1 has been shown to interact with the important signaling transducers WAVE and p85PI3K to regulate cytoskeletal and growth signaling (4,5). Along its sequences, Abi1 has multiple modules for carrying on these interactions. It has a WAVE binding domain, which allows it to interact with WAVE, a homeo-domain/PEST domain, which, when phosphorylated can acts as a docking site for SH2 binding, a PXXP sequence to interact with the SH3 domain of Abl, and a C-terminal SH3 domain for interaction with the proline rich region of Ab1 (4,5). Abl can phosphorylate Abi1 on Y213 (6), the phosphorylated sequence serves as a docking site for both the SH2 domain of Abl and the SH2 domain of p85PI3K (7). Another important phosphorylation site for Abi1 is Y435. Phosphorylation of Abi1 at Y435 promotes tumor cell adhesion and invasion (8).