Interested in promotions? | Click here >>

Product listing: PathScan® Phospho-PDGF Receptor β (Tyr751) Sandwich ELISA Kit, UniProt ID P09619 #7345 to Phospho-EGF Receptor (Tyr1068) Blocking Peptide, UniProt ID P00533 #1110

$489
96 assays
1 Kit
CST's PathScan® Phospho-PDGF Receptor beta (Tyr751) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of Phospho-PDGF Receptor beta (Tyr751) protein. A PDGF Receptor beta Rabbit mAb has been coated onto the microwells. After incubation with cell lysates, both nonphospho- and phospho- PDGF Receptor beta proteins are captured by the coated antibody. Following extensive washing, Phospho-PDGF Receptor beta Mouse mAb is added to detect the captured phospho-PDGF Receptor beta protein. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of optical density for this developed color is proportional to the quantity of phospho-PDGF Receptor beta (Tyr751) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human, Mouse

Background: Platelet derived growth factor (PDGF) family proteins exist as several disulphide-bonded, dimeric isoforms (PDGF AA, PDGF AB, PDGF BB, PDGF CC, and PDGF DD) that bind in a specific pattern to two closely related receptor tyrosine kinases, PDGF receptor α (PDGFRα) and PDGF receptor β (PDGFRβ). PDGFRα and PDGFRβ share 75% to 85% sequence homology between their two intracellular kinase domains, while the kinase insert and carboxy-terminal tail regions display a lower level (27% to 28%) of homology (1). PDGFRα homodimers bind all PDGF isoforms except those containing PDGF D. PDGFRβ homodimers bind PDGF BB and DD isoforms, as well as the PDGF AB heterodimer. The heteromeric PDGF receptor α/β binds PDGF B, C, and D homodimers, as well as the PDGF AB heterodimer (2). PDGFRα and PDGFRβ can each form heterodimers with EGFR, which is also activated by PDGF (3). Various cells differ in the total number of receptors present and in the receptor subunit composition, which may account for responsive differences among cell types to PDGF binding (4). Ligand binding induces receptor dimerization and autophosphorylation, followed by binding and activation of cytoplasmic SH2 domain-containing signal transduction molecules, such as GRB2, Src, GAP, PI3 kinase, PLCγ, and NCK. A number of different signaling pathways are initiated by activated PDGF receptors and lead to control of cell growth, actin reorganization, migration, and differentiation (5). Tyr751 in the kinase-insert region of PDGFRβ is the docking site for PI3 kinase (6). Phosphorylated pentapeptides derived from Tyr751 of PDGFRβ (pTyr751-Val-Pro-Met-Leu) inhibit the association of the carboxy-terminal SH2 domain of the p85 subunit of PI3 kinase with PDGFRβ (7). Tyr740 is also required for PDGFRβ-mediated PI3 kinase activation (8).

$489
96 assays
1 Kit
The PathScan® Phospho-Ret (panTyr) Chemiluminescent Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of tyrosine-phosphorylated Ret protein with a chemiluminescent readout. Chemiluminescent ELISAs often have a wider dynamic range and higher sensitivity than conventional chromogenic detection. This chemiluminescent ELISA, which is offered in low volume microplates, shows increased signal and sensitivity while using a smaller sample size. A Ret Rabbit mAb has been coated onto the microwells. After incubation with cell lysates, Ret protein (phospho and nonphospho) is captured by the coated antibody. Following extensive washing, a Phospho-Tyrosine Mouse Detection mAb is added to detect captured tyrosine-phosphorylated Ret protein. Anti-mouse IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. Chemiluminescent reagent is added for signal development. The magnitude of light emission, measured in relative light units (RLU), is proportional to the quantity of tyrosine-phosphorylated Ret protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: The Ret proto-oncogene (c-Ret) is a receptor tyrosine kinase that functions as a multicomponent receptor complex in conjunction with other membrane-bound, ligand-binding GDNF family receptors (1). Ligands that bind the Ret receptor include the glial cell line-derived neurotrophic factor (GDNF) and its congeners neurturin, persephin, and artemin (2-4). Research studies have shown that alterations in the corresponding RET gene are associated with diseases including papillary thyroid carcinoma, multiple endocrine neoplasia (type 2A and 2B), familial medullary thyroid carcinoma, and a congenital developmental disorder known as Hirschsprung’s disease (1,3). The Tyr905 residue located in the Ret kinase domain plays a crucial role in Ret catalytic and biological activity. Substitution of Phe for Tyr at position 905 dramatically inhibits Ret autophosphorylation activity (5).

$489
96 assays
1 Kit
The PathScan® Phospho-Ret (panTyr) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of tyrosine-phosphorylated Ret protein. A Ret rabbit mAb has been coated on the microwells. After incubation with cell lysates, Ret protein (phospho and nonphospho) is captured by the coated antibody. Following extensive washing, a phospho-tyrosine mouse mAb is added to detect captured tyrosine-phosphorylated Ret protein. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of Ret protein phosphorylated on tyrosine residues.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: The Ret proto-oncogene (c-Ret) is a receptor tyrosine kinase that functions as a multicomponent receptor complex in conjunction with other membrane-bound, ligand-binding GDNF family receptors (1). Ligands that bind the Ret receptor include the glial cell line-derived neurotrophic factor (GDNF) and its congeners neurturin, persephin, and artemin (2-4). Research studies have shown that alterations in the corresponding RET gene are associated with diseases including papillary thyroid carcinoma, multiple endocrine neoplasia (type 2A and 2B), familial medullary thyroid carcinoma, and a congenital developmental disorder known as Hirschsprung’s disease (1,3). The Tyr905 residue located in the Ret kinase domain plays a crucial role in Ret catalytic and biological activity. Substitution of Phe for Tyr at position 905 dramatically inhibits Ret autophosphorylation activity (5).

$489
96 assays
1 Kit
PathScan® Phospho-Ron (panTyr) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of tyrosine-phosphorylated Ron proteins. A Ron Rabbit mAb has been coated onto the microwells. After incubation with cell lysates, Ron protein (phospho and nonphospho) is captured by the coated antibody. Following extensive washing, Phospho-Tyrosine Mouse Detection Antibody is added to detect captured tyrosine-phosphorylated Ron protein. Anti-mouse IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of absorbance for the developed color is proportional to the quantity of tyrosine-phosphorylated Ron protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Ron is a member of the Met protooncogene family of receptor tyrosine kinases, which also includes Stk, c-Met, and c-Sea. The functional Ron is a heterodimer composed of a 40 kDa α chain and a 150 kDa β chain. Ron is initially synthesized in the cells as a single-chain, pro-Ron precursor that is cleaved into the two active chains. The α chain is completely extracellular, whereas the β chain traverses the cell membrane and contains the intracellular tyrosine kinase and regulatory elements (1,2). Ron mediates multiple signaling cascades that involve cell motility, adhesion, proliferation, and apoptosis. The signaling pathways activated downstream of Ron include the ras/mitogen-activated protein kinase (MAPK), phosphatidyl inositol-3 kinase (PI3K)/Akt, and focal adhesion kinase (FAK) pathways. Ron activation can also significantly increase c-Src activity, a signaling intermediate involved in cell cycle progression, motility, angiogenesis and survival (3,4). The function of Ron has been shown to be important for embryological development as well as implicated in the progression and metastasis of tumors (5).

$489
96 assays
1 Kit
The PathScan® Phospho-ROS1 (panTyr) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of tyrosine-phosphorylated ROS1 protein. A ROS1 rabbit antibody has been coated onto the microwells. After incubation with cell lysates, ROS1 protein (phospho and nonphospho) is captured by the coated antibody. Following extensive washing, a phospho-tyrosine mouse detection antibody is added to detect captured tyrosine-phosphorylated ROS1 protein. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate TMB is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of ROS1 protein phosphorylated on tyrosine.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: ROS1, an orphan receptor tyrosine kinase of the insulin receptor family, was initially identified as a homolog of v-ros from the UR2 sarcoma virus (1). ROS1 consists of a large extracellular domain that is composed of six fibronectin repeats, a transmembrane domain, and an intracellular kinase domain. While the function of ROS1 is undefined, it has been shown to play an important role in differentiation of epididymal epithelium (2). The first oncogenic fusion of ROS1, FIG-ROS1, was initially identified by research studies in glioblastoma (3), and subsequent studies have found this fusion in cholangiocarcinoma (4), ovarian cancer (5) and non-small cell lung cancer (NSCLC) (6). Investigators have found additional oncogenic ROS1 fusion proteins in NSCLC (at a frequency of ~1.6%), where the ROS1 kinase domain is fused to the amino-terminal region of a number of different proteins, including CD74 and SLC34A2 (6-8). ROS1 fusion proteins activate the SHP-2 phosphatase, PI3K/Akt/mTOR, Erk, and Stat3 pathways (3,4,9).

$489
96 assays
1 Kit
PathScan® Phospho-Tyro3 (panTyr) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of tyrosine-phosphorylated Mer protein. A Tyro3 Rabbit mAb has been coated onto the microwells. After incubation with cell lysates, Tyro3 protein (phospho and nonphospho) is captured by the coated antibody. Following extensive washing, a Phospho-Tyrosine Mouse Detection mAb is added to detect the captured phospho-Tyro3 proteins. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of optical density for this developed color is proportional to the quantity of Tyro3 protein phosphorylated on tyrosine residues.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Tyro3 is a receptor tyrosine kinase belonging to the TAM subfamily (Tyro3, Axl and Mer). All three members have similar domain structure composed of an extracellular region with 2 Ig-like domains, followed by 2 FNII-like domains, a single transmembrane region, and a cytoplasmic tyrosine kinase domain (1). The natural ligand for Tyro3, as well as Axl and Mer, is Gas6 (growth arrest-specific gene 6) (1,2). Expression pattern and target knockout data indicate an important role of Tyro3 in apoptotic cell phagocytosis of dendritic cells and macrophages (3), NK cell differentiation (4), reproductive neuron survival and migration (5), osteoclast stimulation (6,7), as well as cortical and hippocampal neuron function (8). Both MAPK and PI3K pathways have been suggested as downstream targets of Tyro3 activation (7,8). Tyro3 has also been shown to be correlated to melanoma tumorigenesis, likely through its reglulatory role in the expression of oncogenic microphthalmia-associated transcription factor (MITF) (9).

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Phospho-VEGFR-2 (Tyr1175) Sandwich ELISA Antibody Pair is offered as an economical alternative to our PathScan® Phospho-VEGFR-2 (Tyr1175) Sandwich ELISA Kit #7335. Capture and detection antibodies (100X stocks) and HRP-conjugated secondary antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The VEGFR-2 capture antibody is coated in PBS overnight in a 96 well microplate. After blocking, cell lysates are added followed by a Phospho-VEGFR-2 (Tyr1175) detection antibody and anti-rabbit IgG, HRP conjugated antibody. HRP substrate (TMB) is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of Phospho-VEGFR-2 (Tyr1175) protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Vascular endothelial growth factor receptor 2 (VEGFR2, KDR, Flk-1) is a major receptor for VEGF-induced signaling in endothelial cells. Upon ligand binding, VEGFR2 undergoes autophosphorylation and becomes activated (1). Major autophosphorylation sites of VEGFR2 are located in the kinase insert domain (Tyr951/996) and in the tyrosine kinase catalytic domain (Tyr1054/1059) (2). Activation of the receptor leads to rapid recruitment of adaptor proteins, including Shc, GRB2, PI3 kinase, NCK, and the protein tyrosine phosphatases SHP-1 and SHP-2 (3). Phosphorylation at Tyr1212 provides a docking site for GRB2 binding and phospho-Tyr1175 binds the p85 subunit of PI3 kinase and PLCγ, as well as Shb (1,4,5). Signaling from VEGFR2 is necessary for the execution of VEGF-stimulated proliferation, chemotaxis and sprouting, as well as survival of cultured endothelial cells in vitro and angiogenesis in vivo (6-8).

$489
96 assays
1 Kit
The PathScan® Phospho-VEGFR-2 (Tyr1175) Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of Phospho-VEGFR-2 (Tyr1175) protein. A VEGFR-2 Mouse mAb has been coated onto the microwells. After incubation with cell lysates, both nonphospho- and phospho-VEGFR-2 proteins are captured by the coated antibody. Following extensive washing, a phospho-VEGFR-2 Rabbit mAb is added to detect the captured phospho-VEGFR-2 protein. Anti-rabbit IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of optical density for this developed color is proportional to the quantity of phospho-VEGFR-2 protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Vascular endothelial growth factor receptor 2 (VEGFR2, KDR, Flk-1) is a major receptor for VEGF-induced signaling in endothelial cells. Upon ligand binding, VEGFR2 undergoes autophosphorylation and becomes activated (1). Major autophosphorylation sites of VEGFR2 are located in the kinase insert domain (Tyr951/996) and in the tyrosine kinase catalytic domain (Tyr1054/1059) (2). Activation of the receptor leads to rapid recruitment of adaptor proteins, including Shc, GRB2, PI3 kinase, NCK, and the protein tyrosine phosphatases SHP-1 and SHP-2 (3). Phosphorylation at Tyr1212 provides a docking site for GRB2 binding and phospho-Tyr1175 binds the p85 subunit of PI3 kinase and PLCγ, as well as Shb (1,4,5). Signaling from VEGFR2 is necessary for the execution of VEGF-stimulated proliferation, chemotaxis and sprouting, as well as survival of cultured endothelial cells in vitro and angiogenesis in vivo (6-8).

$489
96 assays
1 Kit
The PathScan® Total ALK Chemiluminescent Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of total ALK protein and EML4-ALK or NPM-ALK fusion proteins with a chemiluminescent readout. Chemiluminescence ELISAs often have a wider dynamic range and higher sensitivity than conventional chromogenic detection. This chemiluminescent ELISA, which is offered in low volume microplates, shows increased signal and sensitivity while using a smaller sample size. An ALK rabbit antibody has been coated onto the microwells. After incubation with cell lysates, ALK and ALK fusion proteins are captured by the coated antibody. Following extensive washing, an ALK mouse antibody is added to detect the captured ALK and ALK fusion proteins. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. Chemiluminescent reagent is added for signal development. The magnitude of magnitude of light emission, measured in relative light units (RLU) is proportional to the quantity of total ALK and ALK fusion proteins.
REACTIVITY
Human

Background: Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor for pleiotrophin (PTN), a growth factor involved in embryonic brain development (1-3). In ALK-expressing cells, PTN induces phosphorylation of both ALK and the downstream effectors IRS-1, Shc, PLCγ, and PI3 kinase (1). ALK was originally discovered as a nucleophosmin (NPM)-ALK fusion protein produced by a translocation (4). Investigators have found that the NPM-ALK fusion protein is a constitutively active, oncogenic tyrosine kinase associated with anaplastic lymphoma (4). Research literature suggests that activation of PLCγ by NPM-ALK may be a crucial step for its mitogenic activity and involved in the pathogenesis of anaplastic lymphomas (5).A distinct ALK oncogenic fusion protein involving ALK and echinoderm microtubule-associated protein like 4 (EML4) has been described in the research literature from a non-small cell lung cancer (NSCLC) cell line, with corresponding fusion transcripts present in some cases of lung adenocarcinoma. The short, amino-terminal region of the microtubule-associated protein EML4 is fused to the kinase domain of ALK (6-8).

$489
96 assays
1 Kit
CST's PathScan® Total ALK Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of total ALK and NPM-ALK fusion protein. An ALK rabbit capture antibody has been coated onto the microwells. After incubation with cell lysates, ALK and NPM-ALK proteins (phospho and nonphospho) are captured by the coated antibody. Following extensive washing, an ALK mouse detection antibody is added to detect the captured ALK and NPM-ALK proteins. Anti-mouse IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of absorbance for this developed color is proportional to the quantity of total ALK and NPM-ALK proteins.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor for pleiotrophin (PTN), a growth factor involved in embryonic brain development (1-3). In ALK-expressing cells, PTN induces phosphorylation of both ALK and the downstream effectors IRS-1, Shc, PLCγ, and PI3 kinase (1). ALK was originally discovered as a nucleophosmin (NPM)-ALK fusion protein produced by a translocation (4). Investigators have found that the NPM-ALK fusion protein is a constitutively active, oncogenic tyrosine kinase associated with anaplastic lymphoma (4). Research literature suggests that activation of PLCγ by NPM-ALK may be a crucial step for its mitogenic activity and involved in the pathogenesis of anaplastic lymphomas (5).A distinct ALK oncogenic fusion protein involving ALK and echinoderm microtubule-associated protein like 4 (EML4) has been described in the research literature from a non-small cell lung cancer (NSCLC) cell line, with corresponding fusion transcripts present in some cases of lung adenocarcinoma. The short, amino-terminal region of the microtubule-associated protein EML4 is fused to the kinase domain of ALK (6-8).

$489
96 assays
1 Kit
The PathScan® Total Axl Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of total Axl protein. An Axl mouse antibody has been coated on the microwells. After incubation with cell lysates, Axl protein (phospho and nonphospho) is captured by the coated antibody. Following extensive washing, an Axl rabbit antibody is added to detect captured Axl protein. Anti-rabbit IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate TMB is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of total Axl protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Axl, Sky, and Mer are three members of a receptor tyrosine kinase (RTK) family that share a conserved intracellular tyrosine kinase domain and an extracellular domain similar to those seen in cell adhesion molecules. These RTKs bind the vitamin K-dependent protein growth-arrest-specific 6 (Gas6), which is structurally related to the protein S anticoagulation factor (1). Upon binding to its receptor, Gas6 activates phosphatidylinositol 3-kinase (PI3K) and its downstream targets Akt and S6K, as well as NF-κB (2,3). A large body of evidence supports a role for Gas6/Axl signaling in cell growth and survival in normal and cancer cells (4).

$489
96 assays
1 Kit
The PathScan® Total DDR1 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of total DDR1 protein. A DDR1 rabbit antibody has been coated on the microwells. After incubation with cell lysates, DDR1 protein (phospho and nonphospho) is captured by the coated antibody. Following extensive washing, a DDR1 mouse mAb is added to detect captured DDR1 protein. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of total DDR1 protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: The discoidin domain receptors (DDRs) are receptor tyrosine kinases with a discoidin homology repeat in their extracellular domains, activated by binding to extracellular matrix collagens. So far, two mammalian DDRs have been identified: DDR1 and DDR2 (1). They are widely expressed in human tissues and may have roles in smooth muscle cell-mediated collagen remodeling (2). Research studies have implicated aberrant expression and signaling of DDRs in human diseases related to increased matrix degradation and remodeling, such as cardiovascular disease, liver fibrosis, and tumor invasion (1).

$489
96 assays
1 Kit
CST's PathScan® Total EGF Receptor Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of total EGF Receptor protein. An EGF Receptor Mouse mAb has been coated onto the microwells. After incubation with cell lysates, both phospho- and nonphospho-EGF Receptor proteins are captured by the coated antibody. Following extensive washing, EGF Receptor Rabbit Antibody is added to detect both the captured phospho- and nonphospho-EGF Receptor protein. Anti-rabbit IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of optical density for this developed color is proportional to the quantity of total EGF Receptor protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).

$489
96 assays
1 Kit
PathScan® Total FGF Receptor 1 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of FGFR1 protein. A FGFR1 rabbit mAb has been coated onto the microwells. After incubation with cell lysates, both phospho- and nonphospho-FGFR1 proteins are captured by the coated antibody. Following extensive washing, a FGFR1 mouse antibody is added to detect captured FGFR1 proteins. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of absorbance for the developed color is proportional to the quantity of FGFR1 protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Fibroblast growth factors (FGFs) produce mitogenic and angiogenic effects in target cells by signaling through cell surface receptor tyrosine kinases. There are four members of the FGF receptor family: FGFR1 (flg), FGFR2 (bek, KGFR), FGFR3, and FGFR4. Each receptor contains an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic kinase domain (1). Following ligand binding and dimerization, the receptors are phosphorylated at specific tyrosine residues (2). Seven tyrosine residues in the cytoplasmic tail of FGFR1 can be phosphorylated: Tyr463, 583, 585, 653, 654, 730, and 766. Tyr653 and Tyr654 are important for catalytic activity of activated FGFR and are essential for signaling (3). The other phosphorylated tyrosine residues may provide docking sites for downstream signaling components such as Crk and PLCγ (4,5).

$489
96 assays
1 Kit
The PathScan® Total FGF Receptor 4 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of FGFR4 protein. An FGFR4 rabbit mAb has been coated onto the microwells. After incubation with cell lysates, both phospho- and nonphospho-FGFR4 proteins are captured by the coated antibody. Following extensive washing, an FGFR4 mouse detection mAb is added to detect captured FGFR4 proteins. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of absorbance for the developed color is proportional to the quantity of FGFR4 protein.Antibodies in the kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Fibroblast growth factors (FGFs) produce mitogenic and angiogenic effects in target cells by signaling through cell surface receptor tyrosine kinases. There are four members of the FGF receptor family: FGFR1 (flg), FGFR2 (bek, KGFR), FGFR3, and FGFR4. Each receptor contains an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic kinase domain (1). Following ligand binding and dimerization, the receptors are phosphorylated at specific tyrosine residues (2). Seven tyrosine residues in the cytoplasmic tail of FGFR1 can be phosphorylated: Tyr463, 583, 585, 653, 654, 730, and 766. Tyr653 and Tyr654 are important for catalytic activity of activated FGFR and are essential for signaling (3). The other phosphorylated tyrosine residues may provide docking sites for downstream signaling components such as Crk and PLCγ (4,5).

$489
96 assays
1 Kit
The PathScan® Total FGFR2 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of FGFR2 protein. An FGFR2 rabbit antibody has been coated on the microwells. After incubation with cell lysates, FGFR2 protein (phospho and nonphospho) is captured by the coated antibody. Following extensive washing, a FGFR2 mouse detection antibody is added to detect captured FGFR2 protein. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of total FGFR2 protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Fibroblast growth factors (FGFs) produce mitogenic and angiogenic effects in target cells by signaling through cell surface receptor tyrosine kinases. There are four members of the FGF receptor family: FGFR1 (flg), FGFR2 (bek, KGFR), FGFR3, and FGFR4. Each receptor contains an extracellular ligand binding domain, a transmembrane domain, and a cytoplasmic kinase domain (1). Following ligand binding and dimerization, the receptors are phosphorylated at specific tyrosine residues (2). Seven tyrosine residues in the cytoplasmic tail of FGFR1 can be phosphorylated: Tyr463, 583, 585, 653, 654, 730, and 766. Tyr653 and Tyr654 are important for catalytic activity of activated FGFR and are essential for signaling (3). The other phosphorylated tyrosine residues may provide docking sites for downstream signaling components such as Crk and PLCγ (4,5).

$489
96 assays
1 Kit
CST's PathScan® Total FLT3 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of total FLT3 protein. A FLT3 Mouse mAb has been coated onto the microwells. After incubation with cell lysates, both phospho- and nonphospho-FLT3 proteins are captured by the coated antibody. Following extensive washing, FLT3 Rabbit Antibody is added to detect both the captured phospho- and nonphospho-FLT3 protein. Anti-rabbit IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of total FLT3 protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: FMS-related tyrosine kinase 3 (FLT3, also called Flk2), is a member of the type III receptor tyrosine kinase family, which includes c-Kit, PDGFR and M-CSF receptors. FLT3 is expressed on early hematopoietic progenitor cells and supports growth and differentiation within the hematopoietic system (1,2). FLT3 is activated after binding with its ligand FL, which results in a cascade of tyrosine autophosphorylation and tyrosine phosphorylation of downstream targets (3). The p85 subunit of PI3 kinase, SHP2, GRB2 and Shc are associated with FLT3 after FL stimulation (4-6). Tyr589/591 is located in the juxtamembrane region of FLT3 and may play an important role in regulation of FLT3 tyrosine kinase activity. Somatic mutations of FLT3 consisting of internal tandem duplications (ITDs) occur in 20% of patients with acute myeloid leukemia (7).

$489
96 assays
1 Kit
The PathScan® Total HER2/ErbB2 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of HER2/ErbB2 protein. A HER2/ErbB2 mouse antibody has been coated on the microwells. After incubation with cell lysates, HER2/ErbB2 protein (phospho and nonphospho) is captured by the coated antibody. Following extensive washing, a HER2/ErbB2 rabbit antibody is added to detect captured HER2/ErbB2 protein. Anti-rabbit IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of HER2/ErbB2 protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: The ErbB2 (HER2) proto-oncogene encodes a 185 kDa transmembrane, receptor-like glycoprotein with intrinsic tyrosine kinase activity (1). While ErbB2 lacks an identified ligand, ErbB2 kinase activity can be activated in the absence of a ligand when overexpressed and through heteromeric associations with other ErbB family members (2). Amplification of the ErbB2 gene and overexpression of its product are detected in almost 40% of human breast cancers (3). Binding of the c-Cbl ubiquitin ligase to ErbB2 at Tyr1112 leads to ErbB2 poly-ubiquitination and enhances degradation of this kinase (4). ErbB2 is a key therapeutic target in the treatment of breast cancer and other carcinomas and targeting the regulation of ErbB2 degradation by the c-Cbl-regulated proteolytic pathway is one potential therapeutic strategy. Phosphorylation of the kinase domain residue Tyr877 of ErbB2 (homologous to Tyr416 of pp60c-Src) may be involved in regulating ErbB2 biological activity. The major autophosphorylation sites in ErbB2 are Tyr1248 and Tyr1221/1222; phosphorylation of these sites couples ErbB2 to the Ras-Raf-MAP kinase signal transduction pathway (1,5).

$489
96 assays
1 Kit
The PathScan® Total HER4/ErbB4 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of HER4/ErbB4 protein. A HER4/ErbB4 rabbit mAb has been coated onto the microwells. After incubation with cell lysates, both phospho- and nonphospho-HER4/ErbB4 proteins are captured by the coated antibody. Following extensive washing, a HER4/ErbB4 mouse antibody is added to detect both the captured phospho- and nonphospho-HER4/ErbB4 proteins. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of absorbance for the developed color is proportional to the quantity of HER4/ErbB4 protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Research studies have implicated the HER/ErbB receptor tyrosine kinase family in normal development, cardiac function and cancer (1,2). HER4/ErbB4, like other family members, has four ectodomains, a single transmembrane domain and a cytoplasmic tail containing the active tyrosine kinase domain (3). By binding to neuregulins and/or EGF family ligands, ErbB4 forms either a homodimer or heterodimer with other ErbB family members, which results in receptor activation and signaling (3). ErbB4 is ubiquitously expressed with the highest expression occurring in brain and heart. The expression of ErbB4 in breast cancer, pediatric brain cancer and other types of carcinomas has been reported in research studies suggesting that ErbB4 expression is involved in both normal tissue development and carcinogenesis (3).

$489
96 assays
1 Kit
PathScan® Total M-CSF Receptor Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of M-CSF receptor protein. An M-CSF receptor mouse mAb has been coated onto the microwells. After incubation with cell lysates, both phospho- and nonphospho-M-CSF receptor proteins are captured by the coated antibody. Following extensive washing, a M-CSF receptor rabbit antibody is added to detect both the captured phospho- and nonphospho-M-CSF receptor proteins. Anti-rabbit IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of optical density for this developed color is proportional to the quantity of M-CSF receptor protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Macrophage-colony stimulating factor (M-CSF, CSF-1) receptor is an integral membrane tyrosine kinase encoded by the c-fms proto-oncogene. M-CSF receptor is expressed in monocytes (macrophages and their progenitors) and drives growth and development of this blood cell lineage. (1-3). Binding of M-CSF to its receptor induces receptor dimerization, activation, and autophosphorylation of cytoplasmic tyrosine residues used as docking sites for SH2-containing signaling proteins (4). There are at least five major tyrosine autophosphorylation sites. Tyr723 (Tyr721 in mouse) is located in the kinase insert (KI) region. Phosphorylated Tyr723 binds the p85 subunit of PI3 kinase as well as PLCγ2 (5). Phosphorylation of Tyr809 provides a docking site for Shc (5). Overactivation of this receptor can lead to a malignant phenotype in various cell systems (6). The activated M-CSF receptor has been shown to be a predictor of poor outcome in advanced epithelial ovarian carcinoma (7) and breast cancer (8).

$489
96 assays
1 Kit
CST's PathScan® Total Met Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of total Met protein. A Met Mouse mAb has been coated onto the microwells. After incubation with cell lysates, both phospho- and nonphospho-Met proteins are captured by the coated antibody. Following extensive washing, Met Rabbit Antibody is added to detect both the captured phospho- and nonphospho-Met protein. Anti-rabbit IgG, HRP-linked Antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of optical density for this developed color is proportional to the quantity of total Met protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Met, a high affinity tyrosine kinase receptor for hepatocyte growth factor (HGF, also known as scatter factor) is a disulfide-linked heterodimer made of 45 kDa α- and 145 kDa β-subunits (1,2). The α-subunit and the amino-terminal region of the β-subunit form the extracellular domain. The remainder of the β-chain spans the plasma membrane and contains a cytoplasmic region with tyrosine kinase activity. Interaction of Met with HGF results in autophosphorylation at multiple tyrosines, which recruit several downstream signaling components, including Gab1, c-Cbl, and PI3 kinase (3). These fundamental events are important for all of the biological functions involving Met kinase activity. The addition of a phosphate at cytoplasmic Tyr1003 is essential for Met protein ubiquitination and degradation (4). Phosphorylation at Tyr1234/1235 in the Met kinase domain is critical for kinase activation. Phosphorylation at Tyr1349 in the Met cytoplasmic domain provides a direct binding site for Gab1 (5). Research studies have shown that altered Met levels and/or tyrosine kinase activities are found in several types of tumors, including renal, colon, and breast. Thus, investigators have concluded that Met is an attractive potential cancer therapeutic and diagnostic target (6,7).

$489
96 assays
1 Kit
CST's PathScan® Total PDGF Receptor α Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of total PDGF receptor α protein. A PDGF receptor α Rabbit Antibody has been coated onto the microwells. After incubation with cell lysates, both phospho and nonphospho PDGF receptor α proteins are captured by the coated antibody. Following extensive washing, Biotinylated PDGF Receptor α Rabbit mAb is added to detect both the captured phospho and nonphospho PDGF receptor α protein. HRP-linked Streptavidin is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of optical density for this developed color is proportional to the quantity of total PDGF receptor α protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Platelet derived growth factor (PDGF) family proteins exist as several disulphide-bonded, dimeric isoforms (PDGF AA, PDGF AB, PDGF BB, PDGF CC, and PDGF DD) that bind in a specific pattern to two closely related receptor tyrosine kinases, PDGF receptor α (PDGFRα) and PDGF receptor β (PDGFRβ). PDGFRα and PDGFRβ share 75% to 85% sequence homology between their two intracellular kinase domains, while the kinase insert and carboxy-terminal tail regions display a lower level (27% to 28%) of homology (1). PDGFRα homodimers bind all PDGF isoforms except those containing PDGF D. PDGFRβ homodimers bind PDGF BB and DD isoforms, as well as the PDGF AB heterodimer. The heteromeric PDGF receptor α/β binds PDGF B, C, and D homodimers, as well as the PDGF AB heterodimer (2). PDGFRα and PDGFRβ can each form heterodimers with EGFR, which is also activated by PDGF (3). Various cells differ in the total number of receptors present and in the receptor subunit composition, which may account for responsive differences among cell types to PDGF binding (4). Ligand binding induces receptor dimerization and autophosphorylation, followed by binding and activation of cytoplasmic SH2 domain-containing signal transduction molecules, such as GRB2, Src, GAP, PI3 kinase, PLCγ, and NCK. A number of different signaling pathways are initiated by activated PDGF receptors and lead to control of cell growth, actin reorganization, migration, and differentiation (5). Tyr751 in the kinase-insert region of PDGFRβ is the docking site for PI3 kinase (6). Phosphorylated pentapeptides derived from Tyr751 of PDGFRβ (pTyr751-Val-Pro-Met-Leu) inhibit the association of the carboxy-terminal SH2 domain of the p85 subunit of PI3 kinase with PDGFRβ (7). Tyr740 is also required for PDGFRβ-mediated PI3 kinase activation (8).

$489
96 assays
1 Kit
The PathScan® Total ROS1 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of ROS1 protein. A ROS1 mouse antibody has been coated onto the microwells. After incubation with cell lysates, ROS1 protein (phospho and nonphospho) is captured by the coated antibody. Following extensive washing, a ROS1 rabbit detection antibody is added to detect captured ROS1 protein. Anti-rabbit IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate TMB is added to develop color. The magnitude of the absorbance for this developed color is proportional to the quantity of Ros protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: ROS1, an orphan receptor tyrosine kinase of the insulin receptor family, was initially identified as a homolog of v-ros from the UR2 sarcoma virus (1). ROS1 consists of a large extracellular domain that is composed of six fibronectin repeats, a transmembrane domain, and an intracellular kinase domain. While the function of ROS1 is undefined, it has been shown to play an important role in differentiation of epididymal epithelium (2). The first oncogenic fusion of ROS1, FIG-ROS1, was initially identified by research studies in glioblastoma (3), and subsequent studies have found this fusion in cholangiocarcinoma (4), ovarian cancer (5) and non-small cell lung cancer (NSCLC) (6). Investigators have found additional oncogenic ROS1 fusion proteins in NSCLC (at a frequency of ~1.6%), where the ROS1 kinase domain is fused to the amino-terminal region of a number of different proteins, including CD74 and SLC34A2 (6-8). ROS1 fusion proteins activate the SHP-2 phosphatase, PI3K/Akt/mTOR, Erk, and Stat3 pathways (3,4,9).

$489
96 assays
1 Kit
PathScan® Total Tyro3 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of Tyro3 protein. A Tyro3 Rabbit mAb has been coated onto the microwells. After incubation with cell lysates, Tyro3 protein (phospho and nonphospho) is captured by the coated antibody. Following extensive washing, a Tyro3 Mouse Detection mAb is added to detect the captured Tyro3 proteins. Anti-mouse IgG, HRP-linked antibody is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of optical density for this developed color is proportional to the quantity of total tyro3 protein.Antibodies in kit are custom formulations specific to kit.
REACTIVITY
Human

Background: Tyro3 is a receptor tyrosine kinase belonging to the TAM subfamily (Tyro3, Axl and Mer). All three members have similar domain structure composed of an extracellular region with 2 Ig-like domains, followed by 2 FNII-like domains, a single transmembrane region, and a cytoplasmic tyrosine kinase domain (1). The natural ligand for Tyro3, as well as Axl and Mer, is Gas6 (growth arrest-specific gene 6) (1,2). Expression pattern and target knockout data indicate an important role of Tyro3 in apoptotic cell phagocytosis of dendritic cells and macrophages (3), NK cell differentiation (4), reproductive neuron survival and migration (5), osteoclast stimulation (6,7), as well as cortical and hippocampal neuron function (8). Both MAPK and PI3K pathways have been suggested as downstream targets of Tyro3 activation (7,8). Tyro3 has also been shown to be correlated to melanoma tumorigenesis, likely through its reglulatory role in the expression of oncogenic microphthalmia-associated transcription factor (MITF) (9).

$469
Reagents for 4 x 96 well plates
1 Kit
CST's PathScan® Total VEGFR-2 Sandwich ELISA Antibody Pair is being offered as an economical alternative to our PathScan® Total VEGFR-2 Sandwich ELISA Kit #7340. Capture and detection antibodies (100X stocks) and HRP-conjugated secondary antibody (1000X stock) are supplied. Sufficient reagents are supplied for 4 x 96 well ELISAs. The VEGFR-2 capture antibody is coated on a 96 well microplate overnight in PBS. After blocking, cell lysates are added followed by a VEGFR-2 detection antibody and anti-rabbit IgG, HRP conjugated antibody. HRP substrate (TMB) is added for color development. The magnitude of the absorbance for this developed color is proportional to the quantity of total VEGFR-2 protein.
REACTIVITY
Human

Background: Vascular endothelial growth factor receptor 2 (VEGFR2, KDR, Flk-1) is a major receptor for VEGF-induced signaling in endothelial cells. Upon ligand binding, VEGFR2 undergoes autophosphorylation and becomes activated (1). Major autophosphorylation sites of VEGFR2 are located in the kinase insert domain (Tyr951/996) and in the tyrosine kinase catalytic domain (Tyr1054/1059) (2). Activation of the receptor leads to rapid recruitment of adaptor proteins, including Shc, GRB2, PI3 kinase, NCK, and the protein tyrosine phosphatases SHP-1 and SHP-2 (3). Phosphorylation at Tyr1212 provides a docking site for GRB2 binding and phospho-Tyr1175 binds the p85 subunit of PI3 kinase and PLCγ, as well as Shb (1,4,5). Signaling from VEGFR2 is necessary for the execution of VEGF-stimulated proliferation, chemotaxis and sprouting, as well as survival of cultured endothelial cells in vitro and angiogenesis in vivo (6-8).

$489
96 assays
1 Kit
CST's PathScan® Total VEGFR-2 Sandwich ELISA Kit is a solid phase sandwich enzyme-linked immunosorbent assay (ELISA) that detects endogenous levels of total VEGFR-2 protein. A VEGFR-2 Mouse mAb (7335-1D6*) has been coated onto the microwells. After incubation with cell lysates, Both nonphospho- and phospho-VEGFR-2 proteins are captured by the coated antibody. Following extensive washing, a VEGFR-2 Rabbit mAb (7340-55B11*) is added to detect the captured VEGFR-2 protein. HRP-linked anti-rabbit antibody (#7074*) is then used to recognize the bound detection antibody. HRP substrate, TMB, is added to develop color. The magnitude of optical density for this developed color is proportional to the quantity of total VEGFR-2 protein.* Antibodies in this kit are custom formulations specific to the kit.
REACTIVITY
Human

Background: Vascular endothelial growth factor receptor 2 (VEGFR2, KDR, Flk-1) is a major receptor for VEGF-induced signaling in endothelial cells. Upon ligand binding, VEGFR2 undergoes autophosphorylation and becomes activated (1). Major autophosphorylation sites of VEGFR2 are located in the kinase insert domain (Tyr951/996) and in the tyrosine kinase catalytic domain (Tyr1054/1059) (2). Activation of the receptor leads to rapid recruitment of adaptor proteins, including Shc, GRB2, PI3 kinase, NCK, and the protein tyrosine phosphatases SHP-1 and SHP-2 (3). Phosphorylation at Tyr1212 provides a docking site for GRB2 binding and phospho-Tyr1175 binds the p85 subunit of PI3 kinase and PLCγ, as well as Shb (1,4,5). Signaling from VEGFR2 is necessary for the execution of VEGF-stimulated proliferation, chemotaxis and sprouting, as well as survival of cultured endothelial cells in vitro and angiogenesis in vivo (6-8).

The PDGF Receptor Activation Antibody Sampler Kit provides an economical means to evaluate the activation status of multiple members of the PDGF receptor pathway, including SHP-2, Akt, and p44/42 MAPK (Erk1/2). The kit includes enough antibody to perform two western blot experiments per primary antibody.
The PDGF Receptor α Antibody Sampler Kit provides an economical means of evaluating total PDGF receptor α protein (PDGFRα) levels as well as PDGFRα phosphorylated at specific sites. The kit contains enough primary and secondary antibody to perform two western blots with each antibody.

Background: Platelet derived growth factor (PDGF) family proteins exist as several disulphide-bonded, dimeric isoforms (PDGF AA, PDGF AB, PDGF BB, PDGF CC, and PDGF DD) that bind in a specific pattern to two closely related receptor tyrosine kinases, PDGF receptor α (PDGFRα) and PDGF receptor β (PDGFRβ). PDGFRα and PDGFRβ share 75% to 85% sequence homology between their two intracellular kinase domains, while the kinase insert and carboxy-terminal tail regions display a lower level (27% to 28%) of homology (1). PDGFRα homodimers bind all PDGF isoforms except those containing PDGF D. PDGFRβ homodimers bind PDGF BB and DD isoforms, as well as the PDGF AB heterodimer. The heteromeric PDGF receptor α/β binds PDGF B, C, and D homodimers, as well as the PDGF AB heterodimer (2). PDGFRα and PDGFRβ can each form heterodimers with EGFR, which is also activated by PDGF (3). Various cells differ in the total number of receptors present and in the receptor subunit composition, which may account for responsive differences among cell types to PDGF binding (4). Ligand binding induces receptor dimerization and autophosphorylation, followed by binding and activation of cytoplasmic SH2 domain-containing signal transduction molecules, such as GRB2, Src, GAP, PI3 kinase, PLCγ, and NCK. A number of different signaling pathways are initiated by activated PDGF receptors and lead to control of cell growth, actin reorganization, migration, and differentiation (5). Tyr751 in the kinase-insert region of PDGFRβ is the docking site for PI3 kinase (6). Phosphorylated pentapeptides derived from Tyr751 of PDGFRβ (pTyr751-Val-Pro-Met-Leu) inhibit the association of the carboxy-terminal SH2 domain of the p85 subunit of PI3 kinase with PDGFRβ (7). Tyr740 is also required for PDGFRβ-mediated PI3 kinase activation (8).

The PDGF Receptor β Antibody Sampler Kit provides a fast and economical means of evaluating levels of PDGF Receptor protein phosphorylated at the specified sites, as well as total PDGF receptor levels. The kit contains enough primary and secondary antibody to perform two Western blot experiments per antibody.

Background: Platelet derived growth factor (PDGF) family proteins exist as several disulphide-bonded, dimeric isoforms (PDGF AA, PDGF AB, PDGF BB, PDGF CC, and PDGF DD) that bind in a specific pattern to two closely related receptor tyrosine kinases, PDGF receptor α (PDGFRα) and PDGF receptor β (PDGFRβ). PDGFRα and PDGFRβ share 75% to 85% sequence homology between their two intracellular kinase domains, while the kinase insert and carboxy-terminal tail regions display a lower level (27% to 28%) of homology (1). PDGFRα homodimers bind all PDGF isoforms except those containing PDGF D. PDGFRβ homodimers bind PDGF BB and DD isoforms, as well as the PDGF AB heterodimer. The heteromeric PDGF receptor α/β binds PDGF B, C, and D homodimers, as well as the PDGF AB heterodimer (2). PDGFRα and PDGFRβ can each form heterodimers with EGFR, which is also activated by PDGF (3). Various cells differ in the total number of receptors present and in the receptor subunit composition, which may account for responsive differences among cell types to PDGF binding (4). Ligand binding induces receptor dimerization and autophosphorylation, followed by binding and activation of cytoplasmic SH2 domain-containing signal transduction molecules, such as GRB2, Src, GAP, PI3 kinase, PLCγ, and NCK. A number of different signaling pathways are initiated by activated PDGF receptors and lead to control of cell growth, actin reorganization, migration, and differentiation (5). Tyr751 in the kinase-insert region of PDGFRβ is the docking site for PI3 kinase (6). Phosphorylated pentapeptides derived from Tyr751 of PDGFRβ (pTyr751-Val-Pro-Met-Leu) inhibit the association of the carboxy-terminal SH2 domain of the p85 subunit of PI3 kinase with PDGFRβ (7). Tyr740 is also required for PDGFRβ-mediated PI3 kinase activation (8).

$320
100 µg
This peptide is used to block Phospho-EGF Receptor (Tyr1068) Antibody #2234 reactivity.
APPLICATIONS

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: The epidermal growth factor (EGF) receptor is a transmembrane tyrosine kinase that belongs to the HER/ErbB protein family. Ligand binding results in receptor dimerization, autophosphorylation, activation of downstream signaling, internalization, and lysosomal degradation (1,2). Phosphorylation of EGF receptor (EGFR) at Tyr845 in the kinase domain is implicated in stabilizing the activation loop, maintaining the active state enzyme, and providing a binding surface for substrate proteins (3,4). c-Src is involved in phosphorylation of EGFR at Tyr845 (5). The SH2 domain of PLCγ binds at phospho-Tyr992, resulting in activation of PLCγ-mediated downstream signaling (6). Phosphorylation of EGFR at Tyr1045 creates a major docking site for the adaptor protein c-Cbl, leading to receptor ubiquitination and degradation following EGFR activation (7,8). The GRB2 adaptor protein binds activated EGFR at phospho-Tyr1068 (9). A pair of phosphorylated EGFR residues (Tyr1148 and Tyr1173) provide a docking site for the Shc scaffold protein, with both sites involved in MAP kinase signaling activation (2). Phosphorylation of EGFR at specific serine and threonine residues attenuates EGFR kinase activity. EGFR carboxy-terminal residues Ser1046 and Ser1047 are phosphorylated by CaM kinase II; mutation of either of these serines results in upregulated EGFR tyrosine autophosphorylation (10).