Microsize antibodies for $99 | Learn More >>

Product listing: CNOT1 (D3V5H) Rabbit mAb, UniProt ID A5YKK6 #30289 to eIF3J (D21G7) XP® Rabbit mAb, UniProt ID O75822 #8161

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The evolutionarily conserved CCR4-NOT (CNOT) complex regulates mRNA metabolism in eukaryotic cells (1). This regulation occurs at different levels of mRNA synthesis and degradation, including transcription initiation, elongation, deadenylation, and degradation (1). Multiple components, including CNOT1, CNOT2, CNOT3, CNOT4, CNOT6, CNOT6L, CNOT7, CNOT8, CNOT9, and CNOT10 have been identified in this complex (2). In addition, subunit composition of this complex has been shown to vary among different tissues (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The evolutionarily conserved CCR4-NOT (CNOT) complex regulates mRNA metabolism in eukaryotic cells (1). This regulation occurs at different levels of mRNA synthesis and degradation, including transcription initiation, elongation, deadenylation, and degradation (1). Multiple components, including CNOT1, CNOT2, CNOT3, CNOT4, CNOT6, CNOT6L, CNOT7, CNOT8, CNOT9, and CNOT10 have been identified in this complex (2). In addition, subunit composition of this complex has been shown to vary among different tissues (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The evolutionarily conserved CCR4-NOT (CNOT) complex regulates mRNA metabolism in eukaryotic cells (1). This regulation occurs at different levels of mRNA synthesis and degradation, including transcription initiation, elongation, deadenylation, and degradation (1). Multiple components, including CNOT1, CNOT2, CNOT3, CNOT4, CNOT6, CNOT6L, CNOT7, CNOT8, CNOT9, and CNOT10 have been identified in this complex (2). In addition, subunit composition of this complex has been shown to vary among different tissues (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The evolutionarily conserved CCR4-NOT (CNOT) complex regulates mRNA metabolism in eukaryotic cells (1). This regulation occurs at different levels of mRNA synthesis and degradation, including transcription initiation, elongation, deadenylation, and degradation (1). Multiple components, including CNOT1, CNOT2, CNOT3, CNOT4, CNOT6, CNOT6L, CNOT7, CNOT8, CNOT9, and CNOT10 have been identified in this complex (2). In addition, subunit composition of this complex has been shown to vary among different tissues (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The evolutionarily conserved CCR4-NOT (CNOT) complex regulates mRNA metabolism in eukaryotic cells (1). This regulation occurs at different levels of mRNA synthesis and degradation, including transcription initiation, elongation, deadenylation, and degradation (1). Multiple components, including CNOT1, CNOT2, CNOT3, CNOT4, CNOT6, CNOT6L, CNOT7, CNOT8, CNOT9, and CNOT10 have been identified in this complex (2). In addition, subunit composition of this complex has been shown to vary among different tissues (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The evolutionarily conserved CCR4-NOT (CNOT) complex regulates mRNA metabolism in eukaryotic cells (1). This regulation occurs at different levels of mRNA synthesis and degradation, including transcription initiation, elongation, deadenylation, and degradation (1). Multiple components, including CNOT1, CNOT2, CNOT3, CNOT4, CNOT6, CNOT6L, CNOT7, CNOT8, CNOT9, and CNOT10 have been identified in this complex (2). In addition, subunit composition of this complex has been shown to vary among different tissues (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The evolutionarily conserved CCR4-NOT (CNOT) complex regulates mRNA metabolism in eukaryotic cells (1). This regulation occurs at different levels of mRNA synthesis and degradation, including transcription initiation, elongation, deadenylation, and degradation (1). Multiple components, including CNOT1, CNOT2, CNOT3, CNOT4, CNOT6, CNOT6L, CNOT7, CNOT8, CNOT9, and CNOT10 have been identified in this complex (2). In addition, subunit composition of this complex has been shown to vary among different tissues (3).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The nuclear protein coilin (COIL) is found in eukaryotic nucleoplasm and serves a marker for sub-organelles known as Cajal bodies (1,2). Cajal bodies (CB) are nuclear structures that are home to various RNA-processing complexes, including those responsible for pre-mRNA splicing, processing of rRNA and histone pre-mRNA, and telomere maintenance (1-3). The presence of coilin protein is essential for CB formation, and the protein plays a role in maintaining Cajal body structural integrity (4,5). Research studies indicate that coilin binds RNA, including telomerase RNA (hTR), pre-rRNA, and U2 snRNA, in addition to DNA (5). Additional research indicates that coilin protein may exhibit specific RNase activity towards hTR and U2 snRNA transcripts, and that this activity may be regulated through phosphorylation of coilin (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: mRNA decapping is an important process in the mRNA turnover (1). DCP1A and DCP2 were identified as two human decapping enzymes and homologs of the better-characterized S. cerevisiae enzymes. Both putative decapping enzymes interact with the regulator of nonsense transcripts 1 (UPF1) and may be recruited by UPF1 or related proteins to mRNA sequences that contain premature termination codons (1). Additional research studies demonstrate that DCP1A, DCP1B (the homolog of DCP1A) and DCP2 colocalize with decapping activation factors RCK/p54 and Lsm proteins in cytoplasmic loci (2). DCP1A, DCP1B and DCP2 are components of cytoplasmic processing (P) bodies, with hyper-phosphorylation of DCP1A during mitosis suggesting a possible mechanism of P-body regulation during the cell cycle (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: mRNA decapping is an important process in the mRNA turnover (1). DCP1A and DCP2 were identified as two human decapping enzymes and homologs of the better-characterized S. cerevisiae enzymes. Both putative decapping enzymes interact with the regulator of nonsense transcripts 1 (UPF1) and may be recruited by UPF1 or related proteins to mRNA sequences that contain premature termination codons (1). Additional research studies demonstrate that DCP1A, DCP1B (the homolog of DCP1A) and DCP2 colocalize with decapping activation factors RCK/p54 and Lsm proteins in cytoplasmic loci (2). DCP1A, DCP1B and DCP2 are components of cytoplasmic processing (P) bodies, with hyper-phosphorylation of DCP1A during mitosis suggesting a possible mechanism of P-body regulation during the cell cycle (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The DEAD box family of RNA helicases is characterized in part by a common D-E-A-D amino acid motif. The family is composed of a growing number of proteins found in a wide range of organisms from bacteria to mammals. DEAD helicases have distinct biological functions in RNA metabolism and ribonucleoprotein (RNP) processing (reviewed in 1,2).DDX3 is a DEAD box family RNA helicase with diverse cellular functions. DDX3 is required for nuclear export of HIV-1 viral transcripts, possibly in a complex with the viral Rev protein and host cofactor CRM1 (3). DDX3 is required for hepatitis C virus (HCV) RNA replication (4) and its expression is downregulated in hepatitis B virus (HBV) associated hepatocellular carcinoma (HCC) (5).Recent evidence suggests that DDX3 functions as a tumor suppressor protein. Its expression inhibits tumor cell colony formation and increases expression of the cdk inhibitor p21 Waf1/Cip1. Low DDX3 expression has been shown in HCC (5,6), and aberrant subcellular localization occurs in many squamous cell carcinomas (6). Reduced DDX3 expression in cultured cells causes a diminished dependence on serum for cell proliferation and changes in cyclin D1 and p21 Waf1/Cip1 expression (5).DDX3 is phosphorylated at Thr204 and Thr323 by the mitotic cyclin dependent kinase, cyclin B/cdc2. This phosphorylation is thought to cause a loss of DDX3 function and a concomitant repression of ribosome biogenesis and translation in mitosis (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: DDX4 is an ATP-dependent DEAD-box RNA helicase found in the chromatoid body of the germ cells (1). This enzyme is specific to germ cells and is necessary for germ cell development (2). Mouse DDX4 was shown to interact with Dicer, suggesting a role in microRNA-mediated RNA silencing (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: DDX4 is an ATP-dependent DEAD-box RNA helicase found in the chromatoid body of the germ cells (1). This enzyme is specific to germ cells and is necessary for germ cell development (2). Mouse DDX4 was shown to interact with Dicer, suggesting a role in microRNA-mediated RNA silencing (1).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: DDX5 (DEAD box polypeptide 5), also known as p68, was first identified as a 68 kDa nuclear protein with similarity to translation initiation factor eIF-4A (1). DDX5 is a member of the DEAD box family of putative RNA helicases, defined by the presence of a conserved DEAD (Asp-Glu-Ala-Asp) motif that appears to function primarily in the regulation of RNA secondary structure. DDX5 exhibits ATP-dependent RNA helicase activity (2) and has been identified as a critical subunit of the DROSHA complex that regulates miRNA and rRNA processing (3,4). DDX may also regulate mRNA splicing (5) and has been shown to interact with HDAC1, where it can regulate promoter-specific transcription (6). DDX5 interacts with a diverse group of proteins, including Runx2, p53, Smad3, CBP, and p300 (7-10), suggesting an important role for DDX5 in a multitude of developmental processes. Notably, DDX5 may be involved in growth factor-induced epithelial mesechymal transition (EMT). Phosphorylation of DDX5 at Tyr593 following PDGF stimulation was shown to displace Axin from β-catenin; this prevented phosphorylation of β-catenin by GSK-3β, leading to Wnt-independent nuclear translocation of β-catenin (11) and increased transcription of c-Myc, cyclin D1, and Snai1 (12,13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: DDX6, also known as RCK and p54, was identified as a proto-oncogene product and is a member of the ATP-dependent DEAD box helicase family (1,2). This protein interacts with translation initiation factor eIF4E in the cytoplasmic P-bodies (3) and represses mRNA translation (4). DDX6 is a component of the miRNA induced silencing complex (miRISC) and interacts with Argonaute 1 (Ago1) and Argonaute 2 (Ago2) proteins in vitro and in vivo (5), functioning in miRNA-mediated translational repression (5). Depletion of DDX6 leads to the disruption of cytoplasmic P-bodies indicating that it is required for P-body formation (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Drosha was identified as a nuclear RNase III that catalyzes the initial step of microRNA (miRNA) processing (1). This enzyme processes the long primary transcript pri-miRNAs into stem-looped pre-miRNAs. Interference of Drosha results in the increase of pri-miRNAs and the decrease of pre-miRNAs (1). Drosha exists in a multiprotein complex called Microprocessor along with other components such as DGCR8 (2). Drosha, along with DGCR8, is necessary for miRNA biogenesis (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: DHX29 is an ATP-dependent RNA helicase that belongs to the DEAD-box helicase family (DEAH subfamily). DHX29 contains one central helicase and one helicase at the carboxy-terminal domain (1). Its function has not been fully established but DHX29 was recently shown to facilitate translation initiation on mRNAs with structured 5' untranslated regions (2). DHX29 binds 40S subunits and hydrolyzes ATP, GTP, UTP, and CTP. Hydrolysis of nucleotide triphosphates by DHX29 is strongly stimulated by 43S complexes and is required for DHX29 activity in promoting 48S complex formation (2).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Dicer is a member of the RNase III family that specifically cleaves double-stranded RNAs to generate microRNAs (miRNAs) (1). After long primary transcript pri-miRNAs are processed to stem-looped pre-miRNAs by Drosha (2), pre-miRNAs are transported to the cytoplasm and further processed by Dicer to produce 22-nucleotide mature miRNAs (3). The mature miRNA then becomes a part of the RNA-Induced Silencing Complex (RISC) and can bind to the 3' UTR of the target mRNA (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Dicer is a member of the RNase III family that specifically cleaves double-stranded RNAs to generate microRNAs (miRNAs) (1). After long primary transcript pri-miRNAs are processed to stem-looped pre-miRNAs by Drosha (2), pre-miRNAs are transported to the cytoplasm and further processed by Dicer to produce 22-nucleotide mature miRNAs (3). The mature miRNA then becomes a part of the RNA-Induced Silencing Complex (RISC) and can bind to the 3' UTR of the target mRNA (3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Drosha was identified as a nuclear RNase III that catalyzes the initial step of microRNA (miRNA) processing (1). This enzyme processes the long primary transcript pri-miRNAs into stem-looped pre-miRNAs. Interference of Drosha results in the increase of pri-miRNAs and the decrease of pre-miRNAs (1). Drosha exists in a multiprotein complex called Microprocessor along with other components such as DGCR8 (2). Drosha, along with DGCR8, is necessary for miRNA biogenesis (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Western Blotting

Background: Drosha was identified as a nuclear RNase III that catalyzes the initial step of microRNA (miRNA) processing (1). This enzyme processes the long primary transcript pri-miRNAs into stem-looped pre-miRNAs. Interference of Drosha results in the increase of pri-miRNAs and the decrease of pre-miRNAs (1). Drosha exists in a multiprotein complex called Microprocessor along with other components such as DGCR8 (2). Drosha, along with DGCR8, is necessary for miRNA biogenesis (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Enhancer of mRNA decapping 3 (EDC3) was originally identified from Saccharomyces cerevisiae as a protein essential to mRNA decapping prior to 5’-3’ mRNA degradation (1). In human cells, EDC3 is found within cytoplasmic processing (P) bodies as part of complexes that include DCP1, DCP2, EDC4/Ge-1, and DDX6/RCK (2). EDC3 and DCP2 interact with TTP, an activator of AU-rich-element (ARE)-mediated decay pathway, to promote decapping and degradation of ARE mRNA (2). In addition, research studies indicate that EDC3 may play a role in the premature termination of RNA polymerase II transcription (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Translation is the process where amino acid residues are assembled into polypeptides on ribosomes. This process is generally divided into three stages: initiation, elongation and termination. During elongation, mRNA and tRNA pair at the two active sites (A and P sites) on the ribosome. A number of eukaryotic elongation factors (eEFs) are involved in this process in mammalian cells (1). eEF1A, also called elongation factor Tu (EF-Tu), binds GTP and interacts with amino acyl-tRNAs to promote recruitment of amino acyl-tRNAs to the A-site of the ribosome (1). After GTP hydrolysis, GDP-eEF1A leaves the ribosome and is later converted back to the GTP-eEF1A by eEF1B (1). Studies have shown that eEF1A is phosphorylated under certain conditions, indicating that its activity is regulated at the post-translational level (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Eukaryotic translation initiation factor 1 (eIF1) was first purified as a factor stimulating binding of Met-tRNA and mRNA to the ribosome (1,2). eIF1 is essential for growth in yeast and two classes of mutations in yeast eIF1 indicate a role for this protein in ensuring accurate translation initiation site selection (3). It has been demonstrated that eIF1 expression is stress-inducible, suggesting that modulation of translation initiation occurs during cellular stress (4).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated eIF2α (D7D3) XP® Rabbit mAb #5324.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Phosphorylation of the eukaryotic initiation factor 2 (eIF2) α subunit is a well-documented mechanism to downregulate protein synthesis under a variety of stress conditions. eIF2 binds GTP and Met-tRNAi and transfers Met-tRNA to the 40S subunit to form the 43S preinitiation complex (1,2). eIF2 promotes a new round of translation initiation by exchanging GDP for GTP, a reaction catalyzed by eIF2B (1,2). Kinases that are activated by viral infection (PKR), endoplasmic reticulum stress (PERK/PEK), amino acid deprivation (GCN2), or heme deficiency (HRI) can phosphorylate the α subunit of eIF2 (3,4). This phosphorylation stabilizes the eIF2-GDP-eIF2B complex and inhibits the turnover of eIF2B. Induction of PKR by IFN-γ and TNF-α induces potent phosphorylation of eIF2α at Ser51 (5,6).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Phosphorylation of the eukaryotic initiation factor 2 (eIF2) α subunit is a well-documented mechanism to downregulate protein synthesis under a variety of stress conditions. eIF2 binds GTP and Met-tRNAi and transfers Met-tRNA to the 40S subunit to form the 43S preinitiation complex (1,2). eIF2 promotes a new round of translation initiation by exchanging GDP for GTP, a reaction catalyzed by eIF2B (1,2). Kinases that are activated by viral infection (PKR), endoplasmic reticulum stress (PERK/PEK), amino acid deprivation (GCN2), or heme deficiency (HRI) can phosphorylate the α subunit of eIF2 (3,4). This phosphorylation stabilizes the eIF2-GDP-eIF2B complex and inhibits the turnover of eIF2B. Induction of PKR by IFN-γ and TNF-α induces potent phosphorylation of eIF2α at Ser51 (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Phosphorylation of the eukaryotic initiation factor 2 (eIF2) α subunit is a well-documented mechanism to downregulate protein synthesis under a variety of stress conditions. eIF2 binds GTP and Met-tRNAi and transfers Met-tRNA to the 40S subunit to form the 43S preinitiation complex (1,2). eIF2 promotes a new round of translation initiation by exchanging GDP for GTP, a reaction catalyzed by eIF2B (1,2). Kinases that are activated by viral infection (PKR), endoplasmic reticulum stress (PERK/PEK), amino acid deprivation (GCN2), or heme deficiency (HRI) can phosphorylate the α subunit of eIF2 (3,4). This phosphorylation stabilizes the eIF2-GDP-eIF2B complex and inhibits the turnover of eIF2B. Induction of PKR by IFN-γ and TNF-α induces potent phosphorylation of eIF2α at Ser51 (5,6).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Translation initiation requires a set of factors to facilitate the association of the 40S ribosomal subunit with mRNA. The eIF4F complex, consisting of eIF4E, eIF4A, and eIF4G, binds to the 5' cap structure of mRNA. eIF4F and eIF4B unwind the secondary structure of mRNA at its 5' untranslated region. The 40S ribosomal subunit, along with some initiation factors including eIF3, then binds to the 5' mRNA cap and searches along the mRNA for the initiation codon. eIF3 is a large translation initiation complex with 10 to 13 different subunits. eIF3A, eIF3B, eIF3C, eIF3E, eIF3F, and eIF3H are the core subunits critical for the function of this complex. eIF3 physically interacts with eIF4G, which may be responsible for the association of the 40S ribosomal subunit with mRNA (1). eIF3 also stabilizes the binding of Met-tRNAf.eIF2.GTP to the 40S ribosomal subunit and helps keep the integrity of the resulting complex upon addition of the 60S ribosomal subunit (2). Studies have shown that mTOR interacts with eIF3 directly (3,4). When cells are stimulated by hormones or mitogenic signals, mTOR binds to the eIF3 complex and phosphorylates S6K1 (3). This process results in the dissociation of S6K1 from eIF3 and S6K1 activation. The activated S6K1 then phosphorylates its downstream targets including ribosomal protein S6 and eIF4B, resulting in stimulation of translation. Further findings demonstrated that activated mTOR signaling induces the association of eIF3 with eIF4G upon stimulation with insulin (3).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Translation initiation requires a set of factors to facilitate the association of the 40S ribosomal subunit with mRNA. The eIF4F complex, consisting of eIF4E, eIF4A, and eIF4G, binds to the 5' cap structure of mRNA. eIF4F and eIF4B unwind the secondary structure of mRNA at its 5' untranslated region. The 40S ribosomal subunit, along with some initiation factors including eIF3, then binds to the 5' mRNA cap and searches along the mRNA for the initiation codon. eIF3 is a large translation initiation complex with 10 to 13 different subunits. eIF3A, eIF3B, eIF3C, eIF3E, eIF3F, and eIF3H are the core subunits critical for the function of this complex. eIF3 physically interacts with eIF4G, which may be responsible for the association of the 40S ribosomal subunit with mRNA (1). eIF3 also stabilizes the binding of Met-tRNAf.eIF2.GTP to the 40S ribosomal subunit and helps keep the integrity of the resulting complex upon addition of the 60S ribosomal subunit (2). Studies have shown that mTOR interacts with eIF3 directly (3,4). When cells are stimulated by hormones or mitogenic signals, mTOR binds to the eIF3 complex and phosphorylates S6K1 (3). This process results in the dissociation of S6K1 from eIF3 and S6K1 activation. The activated S6K1 then phosphorylates its downstream targets including ribosomal protein S6 and eIF4B, resulting in stimulation of translation. Further findings demonstrated that activated mTOR signaling induces the association of eIF3 with eIF4G upon stimulation with insulin (3).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Translation initiation requires a set of factors to facilitate the association of the 40S ribosomal subunit with mRNA. The eIF4F complex, consisting of eIF4E, eIF4A, and eIF4G, binds to the 5' cap structure of mRNA. eIF4F and eIF4B unwind the secondary structure of mRNA at its 5' untranslated region. The 40S ribosomal subunit, along with some initiation factors including eIF3, then binds to the 5' mRNA cap and searches along the mRNA for the initiation codon. eIF3 is a large translation initiation complex with 10 to 13 different subunits. eIF3A, eIF3B, eIF3C, eIF3E, eIF3F, and eIF3H are the core subunits critical for the function of this complex. eIF3 physically interacts with eIF4G, which may be responsible for the association of the 40S ribosomal subunit with mRNA (1). eIF3 also stabilizes the binding of Met-tRNAf.eIF2.GTP to the 40S ribosomal subunit and helps keep the integrity of the resulting complex upon addition of the 60S ribosomal subunit (2). Studies have shown that mTOR interacts with eIF3 directly (3,4). When cells are stimulated by hormones or mitogenic signals, mTOR binds to the eIF3 complex and phosphorylates S6K1 (3). This process results in the dissociation of S6K1 from eIF3 and S6K1 activation. The activated S6K1 then phosphorylates its downstream targets including ribosomal protein S6 and eIF4B, resulting in stimulation of translation. Further findings demonstrated that activated mTOR signaling induces the association of eIF3 with eIF4G upon stimulation with insulin (3).