Microsize antibodies for $99 | Learn More >>

Product listing: Phospho-S6 Ribosomal Protein (Ser240/244) (D68F8) XP® Rabbit mAb (Alexa Fluor® 647 Conjugate), UniProt ID P62753 #5044 to TCF11/NRF1 (D5B10) Rabbit mAb, UniProt ID Q14494 #8052

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated antibody Phospho-S6 Ribosomal Protein (Ser240/244) (D68F8) XP® Rabbit mAb #5364.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$364
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-S6 Ribosomal Protein (Ser240/244) (D68F8) XP® Rabbit mAb #5364.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Phospho-S6 Ribosomal Protein (Ser240/244) (D68F8) XP® Rabbit mAb #5364.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$134
20 µl
$336
100 µl
$792
300 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Splicing factor 3b subunit 1 (SF3B1) is an integral component of the U2 small nuclear ribonucleoprotein (U2 snRNP) and plays an important role in the splicing of pre-mRNA that involves the removal of introns and the joining of exons to form mature mRNA (1-3). The assembly and proper recognition of splice sites are driven by sequences at the pre-mRNA intron-exon splice sites. The 5’ splice donor site is recognized by the U1 snRNP complex, while U2 snRNP binds to the 3’ splice site (branch point), ensuring the anchoring of the spliceosome machinery at the splice sites (3,4). Recent whole exome sequencing studies have demonstrated a high incidence of somatic mutations of SF3B1 in patients with various hematological malignancies such as chronic lymphocytic leukemia and myelodysplastic syndromes (2,3,5,6). Misregulation of pre-mRNA splicing arising from mutations of the spliceosome components such as SF3B1 is thought to contribute to changes in the expression patterns of key proteins that are involved in pathways such as cell cycle progression, cell death, and cancer metabolism (2,3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Transcription factor EB (TFEB) is a member of the Myc-related, bHLH leucine-zipper family of transcription factors that drives the expression of a network of genes known as the Coordinated Lysosomal Expression and Regulation (CLEAR) network (1,2). TFEB specifically recognizes and binds regulatory sequences within the CLEAR box (GTCACGTGAC) of lysosomal and autophagy genes, resulting in the up-regulated expression of genes involved in lysosome biogenesis and function, and regulation of autophagy (1,2). TFEB is activated in response to nutrient deprivation, stimulating translocation to the nucleus where it forms homo- or heterooligomers with other members of the microphthalmia transcription factor (MiTF) subfamily and resulting in up-regulation of autophagosomes and lysosomes (3-5). Recently, it has been shown that TFEB is a component of mammalian target of rapamycin (mTOR) complex 1 (mTORC1), which regulates the phosphorylation and nuclear translocation of TFEB in response to cellular starvation and stress (6-9). During normal growth conditions, TFEB is phosphorylated at Ser211 in an mTORC1-dependent manner. Phosphorylation promotes association of TFEB with 14-3-3 family proteins and retention in the cytosol. Inhibition of mTORC1 results in a loss of TFEB phosphorylation, dissociation of the TFEB/14-3-3 complex, and rapid transport of TFEB to the nucleus where it increases transcription of CLEAR and autophagy genes (10). TFEB has also been shown to be activated in a nutrient-dependent manner by p42 MAP kinase (Erk2). TFEB is phosphorylated at Ser142 by Erk2 in response to nutrient deprivation, resulting in nuclear localization and activation, and indicating that pathways other than mTOR contribute to nutrient sensing via TFEB (3).

$260
100 µl
This Cell Signaling Technology antibody is immobilized by the covalent reaction of formylbenzamide-modified antibody with hydrazide-activated magnetic bead.PKR (D7F7) Rabbit mAb (Magnetic Bead Conjugate) is useful for immunoprecipitation assays of PKR protein.
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein kinase R (PKR) is transcriptionally induced by interferon and activated by double-stranded RNA (dsRNA). PKR inhibits translation initiation through phosphorylation of the α subunit of the initiation factor eIF2 (eIF2α) and also controls the activation of several transcription factors, such as NF-κB, p53, and the Stats. In addition, PKR mediates apoptosis induced by many different stimuli, such as LPS, TNF-α, viral infection, and serum starvation (1,2). Activation of PKR by dsRNA results in PKR dimerization and autophosphorylation of Thr446 and Thr451 in the activation loop. Substitution of threonine for alanine at position 451 completely inactivated PKR, while a mutant with a threonine to alanine substitution at position 446 was partially active (3). Research studies have implicated PKR activation in the pathologies of neurodegenerative diseases, including Alzheimer's disease (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Immunoprecipitation, Western Blotting

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: PTBP1 and PTBP2 are highly related pre-mRNA binding proteins that silence the splicing of alternative exons (1,2 ). While PTBP1 is widely expressed, PTBP2, also known as neural PTB or nPTB, is expressed in post-mitotic neurons. In other cell types, PTBP2 transcripts are alternatively spliced by PTBP1, which leads to nonsense-mediated decay (3). PTBP1 and 2 bind to similar regions across the transcriptome, but PTBP1 has a stronger repressive property likely due to cofactors such as Raver1 and Matrin3 (4-6). Overexpression of PTBPs in various cancers has been observed, leading to alternative splicing of key proteins in oncogenic pathways (6-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: PTBP1 and PTBP2 are highly related pre-mRNA binding proteins that silence the splicing of alternative exons (1,2 ). While PTBP1 is widely expressed, PTBP2, also known as neural PTB or nPTB, is expressed in post-mitotic neurons. In other cell types, PTBP2 transcripts are alternatively spliced by PTBP1, which leads to nonsense-mediated decay (3). PTBP1 and 2 bind to similar regions across the transcriptome, but PTBP1 has a stronger repressive property likely due to cofactors such as Raver1 and Matrin3 (4-6). Overexpression of PTBPs in various cancers has been observed, leading to alternative splicing of key proteins in oncogenic pathways (6-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The X-linked RNA binding motif protein (RBMX, hnRNP G) is a multi-functional protein that is part of a heterogeneous nuclear ribonucleoprotein complex (1,2). This widely expressed protein is involved in the control of pre-mRNA splicing as part of the spliceosome. RBMX is important for the alternative splicing of many pre-mRNAs, including those that encode for dystrophin, tropomyosin, and survival motor neuron protein (SMN) in skeletal muscle and cardiac muscle (3,4). The RBMX protein is essential for the maintenance of proper sister chromatid cohesion prior to sister chromosome segregation during mitosis (5). Research studies show that RBMX accumulates at sites of DNA damage and that the presence of RBMX is required for homologous recombination repair (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Ribosomal protein L26 (RPL26) is a component of the 60S ribosomal subunit and is involved in translation (1,2). It was shown that RPL26 increases the translation of p53 mRNA by binding to its 5' untranslated region (UTR) after DNA damage. Studies found that overexpression of RPL26 enhances the binding of p53 mRNA to the ribosomes and increases p53 translation. Overexpression of RPL26 also induces cell-cycle arrest at G1 phase and increases radiation-stimulated apoptosis (2).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Ribosomal protein S3 (rpS3) is a component of the 40S ribosomal subunit and is involved in translation. HSP90 interacts with both the amino-terminus and carboxy-terminus of rpS3, preventing its ubiquitination and degradation and thereby retaining the integrity of the ribosome (1). rpS3 has also been shown to function as an endonuclease during DNA damage repair (2,3). Furthermore, overexpression of rpS3 sensitizes lymphocytic cells to cytokine-induced apoptosis, indicating a third role for rpS3 during apoptosis (4). The functions of rpS3 during DNA damage repair and apoptosis have been mapped to two distinct domains (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Ribosomal protein L11 (RPL11) is a nucleolar protein and component of the 60S ribosomal subunit. Research studies have shown that RPL11 plays a critical role in eukaryotic ribosome biogenesis (1). It has also been suggested that extraribosomal RPL11 functions in an RP-MDM2-p53 network in which RPL11 acts as a sensor of nucleolar stresses that perturb ribosome biogenesis (2). Indeed, RPL11 contributes to enhanced p53 stability and transcriptional activity in response to nucleolar stress and impaired ribosome biogenesis by binding and inhibiting the ubiquitin ligase activity of MDM2 (2-9). In addition to regulating p53 activity, research studies have also shown that RPL11 can inhibit cell cycle progression and ribosome biogenesis in response to nucleolar stress through repression of c-Myc transcriptional activity as well as its mRNA translation (10-12). Mutations in the RPL11 gene have been found in patients with Diamond-Blackfan anemia (13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Ribosomal protein L5 (RPL5) is one of several proteins that comprise the 60S ribosomal subunit. RPL5 binds 5S rRNA and the nucleolar RPL11 protein to form the 5S ribonucleoprotein particle (RNP) that is incorporated into the large 60S ribosomal subunit (1). An RP-MDM2-p53 protein complex that contains ribosomal proteins RPL5, RPL11, and RPL23 acts as a nucleolar stress sensor that binds and inhibits MDM2 ubiquitin ligase activity and enhances p53-mediated transcriptional activity (2,3). RPL5 cooperates with RPL11 to influence ribosome biogenesis through regulating expression of the transcription factor c-Myc, which acts as the master regulator of ribosome biogenesis (4). Mutations in the corresponding RPL5 gene are associated with Diamond-Blackfan anemia, which is a form of red blood cell aplasia, and some cases of pediatric T-cell acute lymphoblastic leukemia (5,6).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated S6 Ribosomal Protein (54D2) Mouse mAb #2317.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry)

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated S6 Ribosomal Protein (54D2) Mouse mAb #2317.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry)

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated S6 Ribosomal Protein (54D2) Mouse mAb #2317.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated S6 Ribosomal Protein (54D2) Mouse mAb #2317.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated S6 Ribosomal Protein (5G10) Rabbit mAb #2217.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated S6 Ribosomal Protein (5G10) Rabbit mAb #2217.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$260
100 µl
$630
300 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: One way that growth factors and mitogens effectively promote sustained cell growth and proliferation is by upregulating mRNA translation (1,2). Growth factors and mitogens induce the activation of p70 S6 kinase and the subsequent phosphorylation of the S6 ribosomal protein. Phosphorylation of S6 ribosomal protein correlates with an increase in translation of mRNA transcripts that contain an oligopyrimidine tract in their 5' untranslated regions (2). These particular mRNA transcripts (5'TOP) encode proteins involved in cell cycle progression, as well as ribosomal proteins and elongation factors necessary for translation (2,3). Important S6 ribosomal protein phosphorylation sites include several residues (Ser235, Ser236, Ser240, and Ser244) located within a small, carboxy-terminal region of the S6 protein (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: SF2/ASF is a member of the Ser-Arg-rich (SR) protein family of highly conserved nuclear phosphoproteins involved in pre-mRNA splicing (1). Besides its role in nuclear pre-mRNA splicing, SF2/ASF has been shown to shuttle between the nucleus and cytoplasm, suggesting additional roles in mRNA transport and cytoplasmic events (2). SF2/ASF associates with translating ribosomes and stimulates translation (3). It also activates translation initiation by suppressing the activity of 4E-BP1, which is mediated by SF2/ASF association with mTOR and the phosphatase PP2A (4). More recent studies have demonstrated a role for SF2/ASF in microRNA processing (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: SF2/ASF is a member of the Ser-Arg-rich (SR) protein family of highly conserved nuclear phosphoproteins involved in pre-mRNA splicing (1). Besides its role in nuclear pre-mRNA splicing, SF2/ASF has been shown to shuttle between the nucleus and cytoplasm, suggesting additional roles in mRNA transport and cytoplasmic events (2). SF2/ASF associates with translating ribosomes and stimulates translation (3). It also activates translation initiation by suppressing the activity of 4E-BP1, which is mediated by SF2/ASF association with mTOR and the phosphatase PP2A (4). More recent studies have demonstrated a role for SF2/ASF in microRNA processing (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Splicing factor 3b subunit 1 (SF3B1) is an integral component of the U2 small nuclear ribonucleoprotein (U2 snRNP) and plays an important role in the splicing of pre-mRNA that involves the removal of introns and the joining of exons to form mature mRNA (1-3). The assembly and proper recognition of splice sites are driven by sequences at the pre-mRNA intron-exon splice sites. The 5’ splice donor site is recognized by the U1 snRNP complex, while U2 snRNP binds to the 3’ splice site (branch point), ensuring the anchoring of the spliceosome machinery at the splice sites (3,4). Recent whole exome sequencing studies have demonstrated a high incidence of somatic mutations of SF3B1 in patients with various hematological malignancies such as chronic lymphocytic leukemia and myelodysplastic syndromes (2,3,5,6). Misregulation of pre-mRNA splicing arising from mutations of the spliceosome components such as SF3B1 is thought to contribute to changes in the expression patterns of key proteins that are involved in pathways such as cell cycle progression, cell death, and cancer metabolism (2,3).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: p70 S6 kinase is a mitogen activated Ser/Thr protein kinase downstream of phosphoinositide-3 kinase (PI3K) and the target of rapamycin, FRAP/mTOR. p70 S6 kinase is required for cell growth and cell cycle progression (1,2). SKAR is a recently discovered substrate of S6K1. SKAR exists in two isoforms, α and β, the latter having a 29 amino acid truncation. Phosphorylation of SKAR is mitogen-induced and sensitive to rapamycin. Reduction in SKAR protein levels results in decreased cell size, further implicating SKAR in cell growth control (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Survival of Motor Neuron 1 (SMN1) is essential for the maturation of small nuclear ribonucleoproteins (snRNPs) (1,2). SMN1 plays a role in the assembly of spliceosomal snRNPs in the cytoplasm, together with the Gemin proteins, and may also participate in the transport of snRNPs into the nucleus (3-6). SMN1 also participates in the maturation and turnover of snRNPs in nuclear foci Gemini bodies (gems) (7). In addition to the maturation of spliceosomal snRNPs, SMN1 has also been proposed to directly regulate pre-mRNA splicing (8). Researchers have found mutations and deletions of the SMN1 gene are found in 95% of Spinal Muscular Atrophy (SMA) neuromuscular disorder cases (1,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Symplekin is necessary for 3’-end cleavage and polyadenylation of mRNAs, histone 3’-end processing and polyadenylation in the cytoplasm (1-5). It is thought to act as a scaffolding protein that brings together factors involved in mRNA 3’-end processing (1,2). Symplekin also plays a role in transcription initiation and termination by RNA polymerase II (RNAPII) through bridging the interaction between the polyadenylation machinery and RNAPII (3,6,7). In addition to its role in mRNA 3’-end processing, research studies have shown that symplekin localizes at epithelial cell tight junctions where it may help to regulate tight junction assembly, thereby maintaining the integrity of the epithelial monolayer and cell polarity (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Transcription factor 11 (TCF11) is a basic leucine zipper transcription factor. It is also referred to as Nuclear factor E2-related factor 1 (NRF1). TCF11 was initially reported to activate erythroid-specific, human globin gene expression (1). It plays an essential role during embryonic development (2). It also associates with other transcription factors, such as Jun proteins, to transcriptionally control antioxidant response element (ARE)-mediated expression in response to antioxidants and xenobiotics (3-5). TCF11 has been shown to regulate proteasomal degradation and mediate the proteasome recovery pathway after proteasome inhibition (6,7). TCF11 is ubiquitously expressed (8) and several isoforms have been reported. The 120 kDa form exists in the endoplasmic reticulum (ER) membrane under normal conditions. Upon proteasome inhibition, TCF11 translocates to the nucleus (9). The 65 kDa N-terminal-truncated form is constitutively localized to the nucleus (10,11). TCF11 protein levels are regulated by ubiquitination and proteasomal-mediated degradation (12); proteasome inhibitors stabilize TCF11.