Microsize antibodies for $99 | Learn More >>

Product listing: Napsin A (D2G1Y) Rabbit mAb (IF Formulated), UniProt ID O96009 #43861 to SENP1 (D16D7) Rabbit mAb, UniProt ID Q9P0U3 #11929

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Napsin A is an aspartic proteinase that is expressed in normal lung and kidney (1). In the lung, napsin A is expressed by type II pneumocytes and alveolar macrophages, where it plays a role in processing surfactant protein B (2). Napsin A is expressed in lung adenocarcinomas, where it can be used to identify primary and metastatic lesions with greater sensitivity compared to TTF-1 (3,4). Napsin A expression has also been described in other types of cancer, such as kidney and thyroid cancer (5).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Napsin A is an aspartic proteinase that is expressed in normal lung and kidney (1). In the lung, napsin A is expressed by type II pneumocytes and alveolar macrophages, where it plays a role in processing surfactant protein B (2). Napsin A is expressed in lung adenocarcinomas, where it can be used to identify primary and metastatic lesions with greater sensitivity compared to TTF-1 (3,4). Napsin A expression has also been described in other types of cancer, such as kidney and thyroid cancer (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Neural precursor expressed, developmentally down-regulated protein 4 (NEDD4) was originally identified as a gene that is highly expressed in the early mouse embryonic central nervous system (1). Subsequently, a family of NEDD4-like proteins have been defined that includes seven members in humans (2). NEDD4 and NEDD4-like (NEDD4L) proteins contain multiple functional domains including a calcium-dependent phospholipid and membrane binding domain (C2 domain), two to four protein binding domains (WW domains), and an E3 ubiquitin-protein ligase domain (HECT domain). NEDD4 and NEDD4L have been shown to downregulate both neuronal voltage-gated Na+ channels (NaVs) and epithelial Na+ channels (ENaCs) in response to increased intracellular Na+ concentrations (3,4). The WW domains of NEDD4 bind to PY motifs (amino acid sequence PPXY) found in multiple NaV and ENaC proteins; ubiquitination of these proteins is mediated by the HECT domain of NEDD4 and results in their internalization and removal from the plasma membrane. Research studies have shown that mutation of the PY motifs in ENaC proteins is associated with Liddle's syndrome, an autosomal dominant form of hypertension (5). In addition to targeting sodium channels, NEDD4L has also been shown to negatively regulate TGF-β signaling by targeting Smad2 for degradation (6). Mouse and human NEDD4 are rapidly cleaved by caspase proteins during apoptosis, although the significance of this cleavage is not clear (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Neural precursor expressed, developmentally down-regulated protein 4 (NEDD4) was originally identified as a gene that is highly expressed in the early mouse embryonic central nervous system (1). Subsequently, a family of NEDD4-like proteins have been defined that includes seven members in humans (2). NEDD4 and NEDD4-like (NEDD4L) proteins contain multiple functional domains including a calcium-dependent phospholipid and membrane binding domain (C2 domain), two to four protein binding domains (WW domains), and an E3 ubiquitin-protein ligase domain (HECT domain). NEDD4 and NEDD4L have been shown to downregulate both neuronal voltage-gated Na+ channels (NaVs) and epithelial Na+ channels (ENaCs) in response to increased intracellular Na+ concentrations (3,4). The WW domains of NEDD4 bind to PY motifs (amino acid sequence PPXY) found in multiple NaV and ENaC proteins; ubiquitination of these proteins is mediated by the HECT domain of NEDD4 and results in their internalization and removal from the plasma membrane. Research studies have shown that mutation of the PY motifs in ENaC proteins is associated with Liddle's syndrome, an autosomal dominant form of hypertension (5). In addition to targeting sodium channels, NEDD4L has also been shown to negatively regulate TGF-β signaling by targeting Smad2 for degradation (6). Mouse and human NEDD4 are rapidly cleaved by caspase proteins during apoptosis, although the significance of this cleavage is not clear (7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Neural precursor cell-expressed developmentally downregulated protein 8 (NEDD8), also known as Rub1 (related to ubiquitin 1) in plants and yeast, is a member of the ubiquitin-like protein family (1,2). The covalent attachment of NEDD8 to target proteins, termed neddylation, is a reversible, multi-step process analogous to ubiquitination. NEDD8 is first synthesized in a precursor form with a carboxy-terminal extension peptide that is removed by either the UCH-L3 or NEDP1/DEN1 hydrolase protein to yield a mature NEDD8 protein (3,4). Mature NEDD8 is then covalently linked to target proteins via the carboxy-terminal glycine residue in a reaction catalyzed by the APP-BP1/Uba3 heterodimer complex and Ubc12 as the E1- and E2-like enzymes, respectively (5). An E3 ligase protein, Roc1/Rbx1, is also required for neddylation of the cullin proteins (6). Protein de-neddylation is catalyzed by a number of enzymes in the cell, including a "ubiquitin-specific" protease USP21, the NEDP1/DEN1 hydrolase and the COP9/signalosome (CSN) (7,8,9). In contrast to the ubiquitin pathway, the NEDD8 modification system acts on only a few substrates and does not appear to target proteins for degradation. Neddylation of cullin proteins activates the SCF (Skp1-Cullin-F-box) E3 ubiquitin ligase complex by promoting complex formation and enhancing the recruitment of the E2-ubiquitin intermediate (10). While NEDD8 modification of VHL is not required for ubiquitination of HIF1-α, it is required for fibronectin matrix assembly (11). Mdm2-dependent neddylation of p53 inhibits its transcriptional activity (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Protein ubiquitination and deubiquitination are reversible processes catalyzed by ubiquitinating enzymes (UBEs) and deubiquitinating enzymes (DUBs) (1,2). DUBs are categorized into 5 subfamilies: USP, UCH, OTU, MJD, and JAMM (1,2). The OTU subfamily comprises a group of approximately 100 putative cysteine proteases that are homologous to the ovarian tumor gene product of Drosophila (3). OTUB1 and OTUB2 (OTU domain-containing Ubal-binding proteins) display no significant similarity to any known DUB, but are close homologs and possess an OTU domain that contains conserved cysteine, histidine, and aspartate residues that define the putative catalytic triad of cysteine proteases. Furthermore, sequence analysis of OTUB1 and OTUB2 reveals the presence of putative Ub-interaction motifs (UIMs) and Ub-associated domains (UBAs), which are characteristic of proteins that regulate protein ubiquitination. OTUB1 and OTUB2 also possess a putative nuclear localization signal (NLS) and a consensus LxxLL motif, which mediates the interaction between transcriptional co-activators and nuclear hormone receptors (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The 20S proteasome is the major proteolytic enzyme complex involved in intracellular protein degradation. PA700, PA28, and PA200 are three major protein complexes that function as activators of the 20S proteasome. There are three evolutionarily conserved subunits of PA28: PA28α (PSME1), PA28β (PSME2), and PA28γ (PSME3) (1,2). PA28α and PA28β form a heteroheptameric complex and function by binding to the 20S complex at its opening site(s). The PA28α/β complex is present throughout the cell and participates in MHC class I antigen presentation by promoting the generation of antigenic peptides from foreign proteins (2). PA28γ exists in the form of a homoheptamer and is mainly located in the nucleus. The PA28γ complex exerts its function by binding and guiding specific nuclear target proteins to the 20S proteasome for further degradation (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 20S proteasome is the major proteolytic enzyme complex involved in intracellular protein degradation. PA700, PA28, and PA200 are three major protein complexes that function as activators of the 20S proteasome. There are three evolutionarily conserved subunits of PA28: PA28α (PSME1), PA28β (PSME2), and PA28γ (PSME3) (1,2). PA28α and PA28β form a heteroheptameric complex and function by binding to the 20S complex at its opening site(s). The PA28α/β complex is present throughout the cell and participates in MHC class I antigen presentation by promoting the generation of antigenic peptides from foreign proteins (2). PA28γ exists in the form of a homoheptamer and is mainly located in the nucleus. The PA28γ complex exerts its function by binding and guiding specific nuclear target proteins to the 20S proteasome for further degradation (3,4).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The c-Cbl proto-oncogene is a ubiquitously expressed cytoplasmic adaptor protein that is especially predominant in hematopoietic cells (1,2). c-Cbl is rapidly tyrosine-phosphorylated in response to stimulation of a variety of cell-surface receptors and becomes associated with a number of intracellular signaling molecules such as protein tyrosine kinases, phosphatidylinositol-3 kinase, Crk, and 14-3-3 proteins (3,4). c-Cbl possesses a highly conserved amino-terminal phosphotyrosine binding domain (TKB) and a C3HC4 RING finger motif. The TKB recognizes phosphorylated tyrosines on activated receptor tyrosine kinases (RTKs) as well as other nonreceptor tyrosine kinases. The RING finger motif recruits ubiquitin-conjugating enzymes. These two domains are primarily responsible for the ubiquitin ligase activity of c-Cbl and downregulation of RTKs (3). Research studies have indicated that in human cancer tissues, c-Cbl is frequently tyrosine-phosphorylated in a tumor-specific manner (5). Phosphorylation of Tyr731 of c-Cbl provides a docking site for downstream signaling components such as p85 and Fyn (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Neural precursor expressed, developmentally down-regulated protein 4 (NEDD4) was originally identified as a gene that is highly expressed in the early mouse embryonic central nervous system (1). Subsequently, a family of NEDD4-like proteins have been defined that includes seven members in humans (2). NEDD4 and NEDD4-like (NEDD4L) proteins contain multiple functional domains including a calcium-dependent phospholipid and membrane binding domain (C2 domain), two to four protein binding domains (WW domains), and an E3 ubiquitin-protein ligase domain (HECT domain). NEDD4 and NEDD4L have been shown to downregulate both neuronal voltage-gated Na+ channels (NaVs) and epithelial Na+ channels (ENaCs) in response to increased intracellular Na+ concentrations (3,4). The WW domains of NEDD4 bind to PY motifs (amino acid sequence PPXY) found in multiple NaV and ENaC proteins; ubiquitination of these proteins is mediated by the HECT domain of NEDD4 and results in their internalization and removal from the plasma membrane. Research studies have shown that mutation of the PY motifs in ENaC proteins is associated with Liddle's syndrome, an autosomal dominant form of hypertension (5). In addition to targeting sodium channels, NEDD4L has also been shown to negatively regulate TGF-β signaling by targeting Smad2 for degradation (6). Mouse and human NEDD4 are rapidly cleaved by caspase proteins during apoptosis, although the significance of this cleavage is not clear (7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Ubiquitin is a conserved polypeptide unit that plays an important role in the ubiquitin-proteasome pathway. Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the activation component E1; the activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2, then from E2 to ubiquitin ligase E3 for final delivery to the epsilon-NH2 of the target protein lysine residue (1-3). The ubiquitin-proteasome pathway has been implicated in a wide range of normal biological processes and in disease-related abnormalities. Several proteins such as IκB, p53, cdc25A, and Bcl-2 have been shown to be targets for the ubiquitin-proteasome process as part of regulation of cell cycle progression, differentiation, cell stress response, and apoptosis (4-7).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Ubiquitin is a conserved polypeptide unit that plays an important role in the ubiquitin-proteasome pathway. Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the activation component E1; the activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2, then from E2 to ubiquitin ligase E3 for final delivery to the epsilon-NH2 of the target protein lysine residue (1-3). The ubiquitin-proteasome pathway has been implicated in a wide range of normal biological processes and in disease-related abnormalities. Several proteins such as IκB, p53, cdc25A, and Bcl-2 have been shown to be targets for the ubiquitin-proteasome process as part of regulation of cell cycle progression, differentiation, cell stress response, and apoptosis (4-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The 26S proteasome is a highly abundant proteolytic complex involved in the degradation of ubiquitinated substrate proteins. It consists largely of the 20S catalytic core particle (CP) and the 19S/PA700 regulatory particle (RP) that caps either end of the CP. The CP consists of two stacked heteroheptameric β-rings (β1-7) that contain three catalytic β-subunits flanked on either side by two heteroheptameric α-rings (α1-7). The RP includes multimeric base and lid complexes. The RP base includes a heterohexameric ring of ATPase subunits that unfold the substrate and open the α-subunit gate to expose the substrate to the catalytic β-subunits. The lid consists of ubiquitin receptors and DUBs that recruit ubiquitinated substrates and modify ubiquitin chain topology (1,2). Proteasome activity modulators, such as PA28/11S REG, bind the 20S CP cylinder end and open the CP channel (1,2).Proteasome maturation protein (POMP, proteassemblin, hUMP1) is an integral factor essential for assembly of the 20S catalytic core particle during mammalian proteasome biogenesis. POMP promotes heteroheptameric β-ring formation and dimerization of half-proteasomes during core particle assembly. The POMP protein undergoes proteasomal degradation following 20S CP complex assembly and activation (3-6). Research studies suggest that POMP is required for CP assembly for both constitutive proteasomes and immunoproteasomes, and that the assembly focal point resides at the endoplasmic reticulum (6-8). A single nucleotide deletion in the 5' UTR of POMP results in altered epidermal POMP distribution and the autosomal recessive skin disorder known as KLICK syndrome (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 20S proteasome is the major proteolytic enzyme complex involved in intracellular protein degradation. It consists of four stacked rings, each with seven distinct subunits. The two outer layers are identical rings composed of α subunits (called PSMAs), and the two inner layers are identical rings composed of β subunits. While the catalytic sites are located on the β rings (1-3), the α subunits are important for assembly and as binding sites for regulatory proteins (4). Seven different α and ten different β proteasome genes have been identified in mammals (5). PA700, PA28, and PA200 are three major protein complexes that function as activators of the 20S proteasome. PA700 binds polyubiquitin with high affinity and associates with the 20S proteasome to form the 26S proteasome, which preferentially degrades poly-ubiquitinated proteins (1-3). The proteasome has a broad substrate spectrum that includes cell cycle regulators, signaling molecules, tumor suppressors, and transcription factors. By controlling the degradation of these intracellular proteins, the proteasome functions in cell cycle regulation, cancer development, immune responses, protein folding, and disease progression (6-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The 26S proteasome is a highly abundant proteolytic complex involved in the degradation of ubiquitinated substrate proteins. It consists largely of two sub-complexes, the 20S catalytic core particle (CP) and the 19S/PA700 regulatory particle (RP) that can cap either end of the CP. The CP consists of two stacked heteroheptameric β-rings (β1-7) that contain three catalytic β-subunits and are flanked on either side by two heteroheptameric α-rings (α1-7). The RP includes a base and a lid, each having multiple subunits. The base, in part, is composed of a heterohexameric ring of ATPase subunits belonging to the AAA (ATPases Associated with diverse cellular Activities) family. The ATPase subunits function to unfold the substrate and open the gate formed by the α-subunits, thus exposing the unfolded substrate to the catalytic β-subunits. The lid consists of ubiquitin receptors and DUBs that function in recruitment of ubiquitinated substrates and modification of ubiquitin chain topology (1,2). Other modulators of proteasome activity, such as PA28/11S REG, can also bind to the end of the 20S CP and activate it (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 26S proteasome is a highly abundant proteolytic complex involved in the degradation of ubiquitinated substrate proteins. It consists largely of two sub-complexes, the 20S catalytic core particle (CP) and the 19S/PA700 regulatory particle (RP) that can cap either end of the CP. The CP consists of two stacked heteroheptameric β-rings (β1-7) that contain three catalytic β-subunits and are flanked on either side by two heteroheptameric α-rings (α1-7). The RP includes a base and a lid, each having multiple subunits. The base, in part, is composed of a heterohexameric ring of ATPase subunits belonging to the AAA (ATPases Associated with diverse cellular Activities) family. The ATPase subunits function to unfold the substrate and open the gate formed by the α-subunits, thus exposing the unfolded substrate to the catalytic β-subunits. The lid consists of ubiquitin receptors and DUBs that function in recruitment of ubiquitinated substrates and modification of ubiquitin chain topology (1,2). Other modulators of proteasome activity, such as PA28/11S REG, can also bind to the end of the 20S CP and activate it (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 26S proteasome is a highly abundant proteolytic complex involved in the degradation of ubiquitinated substrate proteins. It consists largely of two sub-complexes, the 20S catalytic core particle (CP) and the 19S/PA700 regulatory particle (RP) that can cap either end of the CP. The CP consists of two stacked heteroheptameric β-rings (β1-7) that contain three catalytic β-subunits and are flanked on either side by two heteroheptameric α-rings (α1-7). The RP includes a base and a lid, each having multiple subunits. The base, in part, is composed of a heterohexameric ring of ATPase subunits belonging to the AAA (ATPases Associated with diverse cellular Activities) family. The ATPase subunits function to unfold the substrate and open the gate formed by the α-subunits, thus exposing the unfolded substrate to the catalytic β-subunits. The lid consists of ubiquitin receptors and DUBs that function in recruitment of ubiquitinated substrates and modification of ubiquitin chain topology (1,2). Other modulators of proteasome activity, such as PA28/11S REG, can also bind to the end of the 20S CP and activate it (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: The 26S proteasome is a highly abundant proteolytic complex involved in the degradation of ubiquitinated substrate proteins. It consists largely of two sub-complexes, the 20S catalytic core particle (CP) and the 19S/PA700 regulatory particle (RP) that can cap either end of the CP. The CP consists of two stacked heteroheptameric β-rings (β1-7) that contain three catalytic β-subunits and are flanked on either side by two heteroheptameric α-rings (α1-7). The RP includes a base and a lid, each having multiple subunits. The base, in part, is composed of a heterohexameric ring of ATPase subunits belonging to the AAA (ATPases Associated with diverse cellular Activities) family. The ATPase subunits function to unfold the substrate and open the gate formed by the α-subunits, thus exposing the unfolded substrate to the catalytic β-subunits. The lid consists of ubiquitin receptors and DUBs that function in recruitment of ubiquitinated substrates and modification of ubiquitin chain topology (1,2). Other modulators of proteasome activity, such as PA28/11S REG, can also bind to the end of the 20S CP and activate it (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The 26S proteasome is a highly abundant proteolytic complex involved in the degradation of ubiquitinated substrate proteins. It consists largely of two sub-complexes, the 20S catalytic core particle (CP) and the 19S/PA700 regulatory particle (RP) that can cap either end of the CP. The CP consists of two stacked heteroheptameric β-rings (β1-7) that contain three catalytic β-subunits and are flanked on either side by two heteroheptameric α-rings (α1-7). The RP includes a base and a lid, each having multiple subunits. The base, in part, is composed of a heterohexameric ring of ATPase subunits belonging to the AAA (ATPases Associated with diverse cellular Activities) family. The ATPase subunits function to unfold the substrate and open the gate formed by the α-subunits, thus exposing the unfolded substrate to the catalytic β-subunits. The lid consists of ubiquitin receptors and DUBs that function in recruitment of ubiquitinated substrates and modification of ubiquitin chain topology (1,2). Other modulators of proteasome activity, such as PA28/11S REG, can also bind to the end of the 20S CP and activate it (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The 26S proteasome is a highly abundant proteolytic complex involved in the degradation of ubiquitinated substrate proteins. It consists largely of two sub-complexes, the 20S catalytic core particle (CP) and the 19S/PA700 regulatory particle (RP) that can cap either end of the CP. The CP consists of two stacked heteroheptameric β-rings (β1-7) that contain three catalytic β-subunits and are flanked on either side by two heteroheptameric α-rings (α1-7). The RP includes a base and a lid, each having multiple subunits. The base, in part, is composed of a heterohexameric ring of ATPase subunits belonging to the AAA (ATPases Associated with diverse cellular Activities) family. The ATPase subunits function to unfold the substrate and open the gate formed by the α-subunits, thus exposing the unfolded substrate to the catalytic β-subunits. The lid consists of ubiquitin receptors and DUBs that function in recruitment of ubiquitinated substrates and modification of ubiquitin chain topology (1,2). Other modulators of proteasome activity, such as PA28/11S REG, can also bind to the end of the 20S CP and activate it (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 26S proteasome is a highly abundant proteolytic complex involved in the degradation of ubiquitinated substrate proteins. It consists largely of two sub-complexes, the 20S catalytic core particle (CP) and the 19S/PA700 regulatory particle (RP) that can cap either end of the CP. The CP consists of two stacked heteroheptameric β-rings (β1-7) that contain three catalytic β-subunits and are flanked on either side by two heteroheptameric α-rings (α1-7). The RP includes a base and a lid, each having multiple subunits. The base, in part, is composed of a heterohexameric ring of ATPase subunits belonging to the AAA (ATPases Associated with diverse cellular Activities) family. The ATPase subunits function to unfold the substrate and open the gate formed by the α-subunits, thus exposing the unfolded substrate to the catalytic β-subunits. The lid consists of ubiquitin receptors and DUBs that function in recruitment of ubiquitinated substrates and modification of ubiquitin chain topology (1,2). Other modulators of proteasome activity, such as PA28/11S REG, can also bind to the end of the 20S CP and activate it (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 26S proteasome is a highly abundant proteolytic complex involved in the degradation of ubiquitinated substrate proteins. It consists largely of two sub-complexes, the 20S catalytic core particle (CP) and the 19S/PA700 regulatory particle (RP) that can cap either end of the CP. The CP consists of two stacked heteroheptameric β-rings (β1-7) that contain three catalytic β-subunits and are flanked on either side by two heteroheptameric α-rings (α1-7). The RP includes a base and a lid, each having multiple subunits. The base, in part, is composed of a heterohexameric ring of ATPase subunits belonging to the AAA (ATPases Associated with diverse cellular Activities) family. The ATPase subunits function to unfold the substrate and open the gate formed by the α-subunits, thus exposing the unfolded substrate to the catalytic β-subunits. The lid consists of ubiquitin receptors and DUBs that function in recruitment of ubiquitinated substrates and modification of ubiquitin chain topology (1,2). Other modulators of proteasome activity, such as PA28/11S REG, can also bind to the end of the 20S CP and activate it (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The 26S proteasome is a highly abundant proteolytic complex involved in the degradation of ubiquitinated substrate proteins. It consists largely of two sub-complexes, the 20S catalytic core particle (CP) and the 19S/PA700 regulatory particle (RP) that can cap either end of the CP. The CP consists of two stacked heteroheptameric β-rings (β1-7) that contain three catalytic β-subunits and are flanked on either side by two heteroheptameric α-rings (α1-7). The RP includes a base and a lid, each having multiple subunits. The base, in part, is composed of a heterohexameric ring of ATPase subunits belonging to the AAA (ATPases Associated with diverse cellular Activities) family. The ATPase subunits function to unfold the substrate and open the gate formed by the α-subunits, thus exposing the unfolded substrate to the catalytic β-subunits. The lid consists of ubiquitin receptors and DUBs that function in recruitment of ubiquitinated substrates and modification of ubiquitin chain topology (1,2). Other modulators of proteasome activity, such as PA28/11S REG, can also bind to the end of the 20S CP and activate it (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 26S proteasome is a highly abundant proteolytic complex involved in the degradation of ubiquitinated substrate proteins. It consists largely of two sub-complexes, the 20S catalytic core particle (CP) and the 19S/PA700 regulatory particle (RP) that can cap either end of the CP. The CP consists of two stacked heteroheptameric β-rings (β1-7) that contain three catalytic β-subunits and are flanked on either side by two heteroheptameric α-rings (α1-7). The RP includes a base and a lid, each having multiple subunits. The base, in part, is composed of a heterohexameric ring of ATPase subunits belonging to the AAA (ATPases Associated with diverse cellular Activities) family. The ATPase subunits function to unfold the substrate and open the gate formed by the α-subunits, thus exposing the unfolded substrate to the catalytic β-subunits. The lid consists of ubiquitin receptors and DUBs that function in recruitment of ubiquitinated substrates and modification of ubiquitin chain topology (1,2). Other modulators of proteasome activity, such as PA28/11S REG, can also bind to the end of the 20S CP and activate it (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The yeast nucleotide excision repair (NER) radiation sensitive protein 23 (rad23) and its human homologs Rad23A (hHR23A) and Rad23B (hHR23B) are critical components of the cellular machinery that recognize DNA lesions and serve as receptors that target ubiquitinated substrates to the proteasome for degradation (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: The yeast nucleotide excision repair (NER) radiation sensitive protein 23 (rad23) and its human homologs Rad23A (hHR23A) and Rad23B (hHR23B) are critical components of the cellular machinery that recognize DNA lesions and serve as receptors that target ubiquitinated substrates to the proteasome for degradation (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Ran GTPase activating protein 1 (RanGAP1) regulates GTP hydrolysis by Ran, which is required for the ability of Ran to regulate nucleocytoplasmic shuttling (1). A significant fraction of cellular RanGAP1 is covalently modified by SUMO-1, which is required for relocalization of RanGAP1from the cytoplasm to the nuclear pore complex and the mitotic spindle (2-5). Research studies demonstrate that RanGAP1 sumoylation is required for stable association of RanGAP1 with RanBP2. Together with the SUMO-conjugating enzyme UBC9/UBE2I, RanGAP1 and RanBP2 are part of a SUMO E3 ligase complex that is implicated in regulating nucleocytoplasmic protein trafficking (6-8). Phosphorylation of RanGAP1 occurs in a cell-cycle-dependent manner and may play a role in regulating RanGAP1 catalytic activity (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: S5a (PSMD4) is a subunit of the 19S regulatory proteasome complex functioning in ubiquitinated-protein targeting and degradation (1). S5a contains two polyubiquitin binding motifs (UIM) that bind multiubiquitin chains by hydrophobic interaction (2,3). In addition to ubiquitin, the UIM of S5a shows high affinity to a ubiquitin-like domain present in many proteins. S5a binds to these types of proteins directly and mediates their targeting to the proteasome for degradation (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: S5a (PSMD4) is a subunit of the 19S regulatory proteasome complex functioning in ubiquitinated-protein targeting and degradation (1). S5a contains two polyubiquitin binding motifs (UIM) that bind multiubiquitin chains by hydrophobic interaction (2,3). In addition to ubiquitin, the UIM of S5a shows high affinity to a ubiquitin-like domain present in many proteins. S5a binds to these types of proteins directly and mediates their targeting to the proteasome for degradation (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: SENP1 is a member of the sentrin/SUMO-specific protease (SENP) family. SENP1 localizes to the nucleoplasm and catalyzes the release of SUMO1, SUMO2, and SUMO3 monomers from sumoylated substrates (1,2). SENP1 has been reported to be responsible for intracellular SUMO homeostasis in the control of normal cellular function (2). The removal of sumoylation by SENP1 from many important target proteins, such as HDAC1, HIF-1α, Stat5, p300, Elk-1, and SirT1, leads to the regulation of the related biological pathways (3-8). SENP1-induced desumoylation of HIF-1α stabilizes the target during hypoxia (5), activating downstream VEGF expression and angiogenesis (9). SENP1 desumoylates Stat5 and contributes to Stat5 acetylation and subsequent signaling during normal lymphocyte development (6). Under stress conditions, SENP1 interacts with and inactivates SirT1 by desumoylation, protecting cells from apoptosis (8). SENP1 has been reported to target the progesterone and androgen receptors, either directly or indirectly through HDAC1, thereby upregulating their transcriptional function and potentially affecting receptor-related cancer progression (3,10-13).