20% off purchase of 3 or more products* | Learn More >>

Product listing: DUB Antibody Sampler Kit, UniProt ID O95630 #8353 to K63-linkage Specific Polyubiquitin (D7A11) Rabbit mAb #5621

The DUB Antibody Sampler Kit offers an economical means of evaluating the presence and status of selected DUB enzymes. This kit contains enough primary antibody to perform two western blot experiments per primary.
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Currently, there are five ubiquitin receptors associated with the proteasome: two proteasome subunits, Rpn10/S5a/PSMD4 and Rpn13/ADRM1 (Adhesion-regulating molecule 1), and three families of shuttling factors, Rad23, Dsk2, and Ddi1. ADRM1 is a ubiquitin receptor of the proteasome (1,2) that binds ubiquitin via a pleckstrin homology domain known as the pleckstrin-like receptor for ubiquitin (Pru) domain. The carboxy-terminal domain of mammalian ADRM1 serves to bind and enhance the isopeptidase activity of UCHL5/UCH37 (3-5), perhaps serving as a mechanism to accelerate ubiquitin chain disassembly. A murine Adrm1 knockout results in defective gametogenesis, thus highlighting a physiologic role for endogenous ADRM1 in mammalian development (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Eukaryotic cell proliferation depends strictly upon the E3 ubiquitin ligase activity of the anaphase promoting complex/cyclosome (APC/C), whose main function is to trigger the transition of the cell cycle from metaphase to anaphase. The APC/C complex promotes the assembly of polyubiquitin chains on substrate proteins in order to target these proteins for degradation by the 26S proteasome (1,2). The vertebrate APC/C complex consists of as many as 15 subunits, including multiple scaffold proteins, two catalytic subunits (APC2, APC11), and a number of proteins responsible for substrate recognition (3). All E3 enzymes, including APC/C, utilize ubiquitin residues activated by E1 enzymes and transferred to E2 enzymes. Research studies indicate that APC/C interacts with the E2 enzymes UBE2S and UBE2C via the RING-finger domain-containing subunit APC11 (4-6). APC/C function relies on multiple cofactors, including an APC/C coactivator formed by the cell division control protein 20 homolog (CDC20) and Cdh1/FZR1. The CDC20/Cdh1 coactivator is responsible for recognition of APC/C substrates through interaction with specific D-box and KEN-box recognition elements within these substrates (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Eukaryotic cell proliferation depends strictly upon the E3 ubiquitin ligase activity of the anaphase promoting complex/cyclosome (APC/C), whose main function is to trigger the transition of the cell cycle from metaphase to anaphase. The APC/C complex promotes the assembly of polyubiquitin chains on substrate proteins in order to target these proteins for degradation by the 26S proteasome (1,2). The vertebrate APC/C complex consists of as many as 15 subunits, including multiple scaffold proteins, two catalytic subunits (APC2, APC11), and a number of proteins responsible for substrate recognition (3). All E3 enzymes, including APC/C, utilize ubiquitin residues activated by E1 enzymes and transferred to E2 enzymes. Research studies indicate that APC/C interacts with the E2 enzymes UBE2S and UBE2C via the RING-finger domain-containing subunit APC11 (4-6). APC/C function relies on multiple cofactors, including an APC/C coactivator formed by the cell division control protein 20 homolog (CDC20) and Cdh1/FZR1. The CDC20/Cdh1 coactivator is responsible for recognition of APC/C substrates through interaction with specific D-box and KEN-box recognition elements within these substrates (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Cell proliferation in all eukaryotic cells depends strictly upon the ubiquitin ligase (E3) activity of the anaphase promoting complex/cyclosome (APC/C), whose main function is to trigger the transition of the cell cycle from metaphase to anaphase. APC/C performs its various functions by promoting the assembly of polyubiquitin chains on substrate proteins, which targets these proteins for degradation by the 26S proteasome (1,2). In humans, twelve different APC/C subunits have been identified. Like all E3 enzymes, APC/C utilizes ubiquitin residues that have been activated by E1 enzymes and then transferred to E2 enzymes. Indeed, APC/C has been shown to interact with UBE2S and UBE2C E2 enzymes, in part, via the RING-finger domain-containing subunit, APC11 (3-5). APC/C activity is also strictly dependent upon its association with multiple cofactors. For example, the related proteins, Cdc20 and Cdh1/FZR1, participate in the recognition of APC/C substrates by interacting with specific recognition elements in these substrates (6), called D-boxes (7) and KEN-boxes (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Eukaryotic cell proliferation depends strictly upon the E3 ubiquitin ligase activity of the anaphase promoting complex/cyclosome (APC/C), whose main function is to trigger the transition of the cell cycle from metaphase to anaphase. The APC/C complex promotes the assembly of polyubiquitin chains on substrate proteins in order to target these proteins for degradation by the 26S proteasome (1,2). The vertebrate APC/C complex consists of as many as 15 subunits, including multiple scaffold proteins, two catalytic subunits (APC2, APC11), and a number of proteins responsible for substrate recognition (3). All E3 enzymes, including APC/C, utilize ubiquitin residues activated by E1 enzymes and transferred to E2 enzymes. Research studies indicate that APC/C interacts with the E2 enzymes UBE2S and UBE2C via the RING-finger domain-containing subunit APC11 (4-6). APC/C function relies on multiple cofactors, including an APC/C coactivator formed by the cell division control protein 20 homolog (CDC20) and Cdh1/FZR1. The CDC20/Cdh1 coactivator is responsible for recognition of APC/C substrates through interaction with specific D-box and KEN-box recognition elements within these substrates (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Ancient ubiquitous protein 1 (AUP1) is a component of the ER-associated protein degradation (ERAD) machinery responsible for the ubiquitin-mediated degradation of misfolded proteins (1). AUP1 protein contains four conserved domains, with a long, amino-terminal stretch of hydrophobic amino acids followed by an acyltransferase domain (2). Amino-terminal protein sequences direct localization of AUP1 to both the ER and to cytosolic lipid droplets (3). The AUP1 CUE domain binds ubiquitin (4), while the G2BR domain allows for association between AUP1 and E2 conjugating enzyme UBE2G2 (5,6). The presence of these binding domains suggests a central role for AUP1 in the ubiquitination-mediated protein degradation (2). Research studies indicate that AUP1 recruits UBE2G2 to cytosolic lipid droplets, ER-derived organelles that are sites for storage and hydrolysis of neutral lipids. Inhibition of AUP1 protein function results in decreased ubiquitin-mediated degradation of several proteins, including the cholesterol biosynthetic enzyme HMG-CoA-reductase and the cholesterol synthesis regulator INSIG1 (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: BRCA1-Associated Protein 1 (BAP1) was originally identified as a BRCA1 associated, nuclear localized ubiquitin hydrolase that suppresses cell growth (1). The protein belongs to the UCH family of deubiquitinases, with a UCH domain in its amino-terminal segment and a BRCA1 interaction domain as well as a nuclear localization signal in its carboxy-terminal segment (1). Frequent gene locus rearrangement, deletion, and null mutation of BAP1 have been found in lung and breast cancers (1,2). In vivo mutation analysis of cancer cell line survival and animal tumorigenesis indicates that both the deubiquitinase activity and the nuclear localization signal are required for BAP1 function as a tumor suppressor (3). BAP1 does not have direct deubiquitination activity towards the autoubiquitinated BRCA1/BARD1 E3 complex (4), but its interaction with BARD1 inhibits BRCA1/BARD1 E3 activity by interfering with the complex dimerization process (5). In addition to its interaction with BRCA1/BARD1, BAP1 has also been shown to interact with and deubiquitinate HCF-1, thereby controlling its stability (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: BRCA1-Associated Protein 1 (BAP1) was originally identified as a BRCA1 associated, nuclear localized ubiquitin hydrolase that suppresses cell growth (1). The protein belongs to the UCH family of deubiquitinases, with a UCH domain in its amino-terminal segment and a BRCA1 interaction domain as well as a nuclear localization signal in its carboxy-terminal segment (1). Frequent gene locus rearrangement, deletion, and null mutation of BAP1 have been found in lung and breast cancers (1,2). In vivo mutation analysis of cancer cell line survival and animal tumorigenesis indicates that both the deubiquitinase activity and the nuclear localization signal are required for BAP1 function as a tumor suppressor (3). BAP1 does not have direct deubiquitination activity towards the autoubiquitinated BRCA1/BARD1 E3 complex (4), but its interaction with BARD1 inhibits BRCA1/BARD1 E3 activity by interfering with the complex dimerization process (5). In addition to its interaction with BRCA1/BARD1, BAP1 has also been shown to interact with and deubiquitinate HCF-1, thereby controlling its stability (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein ubiquitination and deubiquitination are reversible processes catalyzed by ubiquitinating enzymes and deubiquitinating enzymes, respectively (1,2). Deubiquitinating enzymes (DUBs) are categorized into five subfamilies based on catalytic domain structure: USP, OTU, MJD, UCH, and JAMM/MPN. BRCC36 is a zinc-dependent DUB belonging to the JAMM/MPN subfamily and participates in DNA damage responses and interferon signaling by specifically catalyzing hydrolysis of K63-linked polyubiquitin chains (3,4). In the nucleus, BRCC36 is part of the BRCA1-A complex that contains RAP80, BRCA1, ABRAXAS, and MERIT40 (5,6). This complex plays a critical role in mediating the cellular repair of DNA double strand breaks induced by ionizing radiation (7-10). Research studies have shown that BRCC36 is overexpressed in a high percentage of breast tumors, which may contribute to resistance of breast cancer cells to ionizing radiation-induced apoptosis (4). BRCC36 also functions in the cytoplasm as part of a distinct complex known as the BRCC36-containing isopeptide complex (BRISC) (5,6). Indeed, research studies have shown that BRCC36 deubquitinates and stabilizes IFNAR1 to modulate the cellular response to interferons (3).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: The c-Cbl proto-oncogene is a ubiquitously expressed cytoplasmic adaptor protein that is especially predominant in hematopoietic cells (1,2). c-Cbl is rapidly tyrosine-phosphorylated in response to stimulation of a variety of cell-surface receptors and becomes associated with a number of intracellular signaling molecules such as protein tyrosine kinases, phosphatidylinositol-3 kinase, Crk, and 14-3-3 proteins (3,4). c-Cbl possesses a highly conserved amino-terminal phosphotyrosine binding domain (TKB) and a C3HC4 RING finger motif. The TKB recognizes phosphorylated tyrosines on activated receptor tyrosine kinases (RTKs) as well as other nonreceptor tyrosine kinases. The RING finger motif recruits ubiquitin-conjugating enzymes. These two domains are primarily responsible for the ubiquitin ligase activity of c-Cbl and downregulation of RTKs (3). Research studies have indicated that in human cancer tissues, c-Cbl is frequently tyrosine-phosphorylated in a tumor-specific manner (5). Phosphorylation of Tyr731 of c-Cbl provides a docking site for downstream signaling components such as p85 and Fyn (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The c-Cbl proto-oncogene is a ubiquitously expressed cytoplasmic adaptor protein that is especially predominant in hematopoietic cells (1,2). c-Cbl is rapidly tyrosine-phosphorylated in response to stimulation of a variety of cell-surface receptors and becomes associated with a number of intracellular signaling molecules such as protein tyrosine kinases, phosphatidylinositol-3 kinase, Crk, and 14-3-3 proteins (3,4). c-Cbl possesses a highly conserved amino-terminal phosphotyrosine binding domain (TKB) and a C3HC4 RING finger motif. The TKB recognizes phosphorylated tyrosines on activated receptor tyrosine kinases (RTKs) as well as other nonreceptor tyrosine kinases. The RING finger motif recruits ubiquitin-conjugating enzymes. These two domains are primarily responsible for the ubiquitin ligase activity of c-Cbl and downregulation of RTKs (3). Research studies have indicated that in human cancer tissues, c-Cbl is frequently tyrosine-phosphorylated in a tumor-specific manner (5). Phosphorylation of Tyr731 of c-Cbl provides a docking site for downstream signaling components such as p85 and Fyn (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Cullin-associated and neddylation-dissociated (CAND1)/TIP120A is a protein containing multiple HEAT repeats. It functions, in part, as an inhibitor of multiple cullin-RING ubiquitin ligases (CRLs) via binding to cullin-RBX complexes that are both unconjugated to NEDD8 and lack association with substrate recognition subunits (1-3). Indeed, CAND1 has been shown to bind all cullin family members in human cells and analysis of the crystal structure of human CAND1 bound to the CUL1-RBX1 complex suggests that CAND1 inhibits the activity of CRLs by sterically blocking both the substrate recognition subunit binding site and the NEDD8 conjugation site (1,3,4). Conversely, CAND1 binding to cullin-RBX complexes is incompatible with neddylation as NEDD8 conjugated to cullins blocks CAND1 binding, suggesting that CAND1 binds to cullins only after the COP9 signalosome has catalyzed cullin deneddylation. Through its ability to negatively regulate CRL assembly, CAND1 plays an integral part in facilitating CRL activation cycles that allow CRLs to utilize distinct substrate recognition subunits and protects these subunits from undergoing ubiquitin-dependent degradation (5-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The Casitas B lineage lymphoma (Cbl) proteins (in mammals these are c-Cbl, Cbl-b, and Cbl-c) are a family of single subunit RING finger protein-ubiquitin E3 ligases that contain multiple protein interaction motifs (1). All Cbl proteins have a highly conserved N-terminal tyrosine kinase-binding (TKB) domain that mediates interactions between Cbl proteins and phosphorylated tyrosine residues on Cbl substrates. C-terminal to the RING finger, Cbl proteins have proline-rich domains that mediate interactions with SH3 domain-containing proteins. Phosphorylated tyrosine residues mediate interactions with SH2 domain-containing proteins such as the p85 subunit of PI3K. These protein-protein interaction motifs allow Cbl family proteins to function as adaptor proteins (2). This adaptor function contributes to the E3-dependent activities of Cbl proteins by targeting specific substrates for ubiquitination and degradation. The adaptor function also contributes to non-E3-dependent activities, such as the recruitment of proteins involved in receptor tyrosine kinase internalization, localization of Cbl proteins to specific subcellular compartments, and activation of discrete signaling pathways (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The carboxy terminus of Hsc70-interacting protein (CHIP, STUB1) is a co-chaperone protein and functional E3 ubiquitin ligase that links the polypeptide binding activity of Hsp70 to the ubiquitin proteasome system (1). Cytoplasmic CHIP protein contains three 34-amino acid TPR (tetratricopeptide repeat) domains at its amino terminus and a carboxy-terminal U-box domain. CHIP interacts with the molecular chaperones Hsc70-Hsp70 and Hsp90 through its TPR domain, while E3 ubiquitin ligase activity is confined to the U-box domain (2,3). The binding of CHIP to Hsp70 can stall the folding of Hsp70 client proteins and concomitantly facilitate the U-box dependent ubiquitination of Hsp70-bound substrates (4-6). CHIP appears to play a central role in cell stress protection (7) and is responsible for the degradation of disease-related proteins that include cystic fibrosis transmembrane conductance regulator (4), p53 (8), huntingtin and Ataxin-3 (9), Tau protein (10), and α-synuclein (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The COP9 Signalosome (CSN) is a ubiquitously expressed multiprotein complex that is involved in a vast array of cellular and developmental processes, which is thought to be attributed to its control over the ubiquitin-proteasome pathway. Typically, the CSN is composed of eight highly conserved subunits (CSN1-CSN8), each of which is homologous to one of the eight subunits that form the lid of the 26S proteasome particle, suggesting that these complexes have a common evolutionary ancestor (1). CSN was first identified in Arabidopsis thaliana mutants with a light-grown seedling phenotype when grown in the dark (2-4). The subsequent cloning of the constitutive morphogenesis 9 (cop9) mutant from Arabidopsis thaliana was soon followed by the biochemical purification of the COP9-containing multiprotein complex (4). It is now widely accepted that the CSN directly interacts with cullin-RING ligase (CRL) families of ubiquitin E3 complexes, and that CSN is required for their proper function (5). In addition, CSN may also regulate protein homeostasis through its association with protein kinases and deubiquitinating enzymes. Collectively, these activities position the CSN as a pivotal regulator of the DNA-damage response, cell-cycle control, and gene expression (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: CRBN/Cereblon, a substrate receptor for the CRL4 E3 ubiquitin ligase, was originally identified for its role in autosomal recessive nonsyndromic mental retardation (1). CRBN’s role in the regulation of the AMPK pathway has been linked to various human diseases, including cardiovascular disease and obesity, and its involvement in proteasomal degradation may be important in neuropsychiatric diseases (2). CRBN has also been shown to enhance the effects of immunomodulatory drugs (IMiDs) in multiple myeloma, and may be a predictive marker for therapy (2-4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: CYLD is a cytoplasmic deubiquitinating enzyme encoded by a tumor suppressor gene altered in individuals diagnosed with cylindromatosis, a genetic condition characterized by benign tumors of skin appendages (1,2). Functional CYLD deubiquitinase regulates inflammation and cell proliferation by down regulating NF-κB signaling through removal of ubiquitin chains from several NF-κB pathway proteins (3,4). CYLD is a negative regulator of proximal events in Wnt/β-catenin signaling and is a critical regulator of natural killer T cell development (5,6). The transcription factor Snail can inhibit CYLD expression, resulting in melanoma cell proliferation (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: CYLD is a cytoplasmic deubiquitinating enzyme encoded by a tumor suppressor gene altered in individuals diagnosed with cylindromatosis, a genetic condition characterized by benign tumors of skin appendages (1,2). Functional CYLD deubiquitinase regulates inflammation and cell proliferation by down regulating NF-κB signaling through removal of ubiquitin chains from several NF-κB pathway proteins (3,4). CYLD is a negative regulator of proximal events in Wnt/β-catenin signaling and is a critical regulator of natural killer T cell development (5,6). The transcription factor Snail can inhibit CYLD expression, resulting in melanoma cell proliferation (7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Damaged DNA-Binding Protein (DDB) consists of a 127 kDa subunit (DDB-1) and a 48 kDa subunit (DDB-2) that contribute to the formation of the UV-damaged DNA-binding protein complex (UV-DDB) (1-3). In conjunction with CUL4A and ROC-1, the UV-DDB complex forms an E3 ubiquitin ligase that recognizes a broad spectrum of DNA lesions such as cyclobutane pyrimidine dimers, 6-4 photoproducts, apurinic sites and short mismatches. The complex polyubiquitinates components of the nucleotide excision repair pathway (4-6). Loss of DDB activity has been identified in a subset of xeroderma pigmentosum complementation group E (XP-E) patients and has been linked to the deficient repair of cyclobutane pyrimidine dimers in cells derived from these patients (7-10).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Damaged DNA-Binding Protein (DDB) consists of a 127 kDa subunit (DDB-1) and a 48 kDa subunit (DDB-2) that contribute to the formation of the UV-damaged DNA-binding protein complex (UV-DDB) (1-3). In conjunction with CUL4A and ROC-1, the UV-DDB complex forms an E3 ubiquitin ligase that recognizes a broad spectrum of DNA lesions such as cyclobutane pyrimidine dimers, 6-4 photoproducts, apurinic sites and short mismatches. The complex polyubiquitinates components of the nucleotide excision repair pathway (4-6). Loss of DDB activity has been identified in a subset of xeroderma pigmentosum complementation group E (XP-E) patients and has been linked to the deficient repair of cyclobutane pyrimidine dimers in cells derived from these patients (7-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: HLA-F adjacent transcript 10 (FAT10/Ubiquitin D) belongs to the ubiquitin-like modifier (Ubl) family of proteins. The 18 kDa FAT10 protein contains two tandem Ubl domains that are oriented in a head-to-tail fashion and a free C-terminal di-glycine motif, which is available for isopeptide bond formation with target proteins via an E1-E2-E3 enzymatic cascade (1). Indeed, FAT10 provides a ubiquitin-independent signal for proteasomal degradation (2). Research studies have demonstrated that FAT10 expression is enriched in lymphoid organs and that its expression is transiently upregulated via the NF-kB pathway in response to pro-inflammatory cytokines such as TNFα and IFNγ (1,3-5). In solid tumors that possess inflammatory microenviroments, research studies have shown that FAT10 is overexpressed and may serve as a biomarker for inflamed tumors (6,7).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Ubiquitinating enzymes (UBEs) catalyze protein ubiquitination, a reversible process countered by deubiquitinating enzyme (DUB) action (1,2). Five DUB subfamilies are recognized, including the USP, UCH, OTU, MJD and JAMM enzymes. Herpesvirus-associated ubiquitin-specific protease (HAUSP, USP7) is an important deubiquitinase belonging to USP subfamily. A key HAUSP function is to bind and deubiquitinate the p53 transcription factor and an associated regulator protein Mdm2, thereby stabilizing both proteins (3,4). In addition to regulating essential components of the p53 pathway, HAUSP also modifies other ubiquitinylated proteins such as members of the FoxO family of forkhead transcription factors and the mitotic stress checkpoint protein CHFR (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The HECT domain-containing ubiquitin E3 ligase HECTH9 (also known as HUWE1, ARF-BP1, URE-B1, Mule, and LASU1) is critical for the ubiquitination and proteasomal degradation of many target proteins, and is involved in the regulation of a variety of cellular processes, including DNA replication and base excision repair, cellular proliferation, differentiation, and apoptosis. HECTH9 contains two Armadillo (ARM) repeat-like domains (ARLD1 and ARLD2), a ubiquitin-associated (UBA) domain, a WWE domain, a well-conserved BH3 domain, and a catalytic HECT domain that facilitates ubiquitination of target proteins. HECTH9 has been shown to polyubiquitinate p53 (1,2), Miz1 (3), N-Myc (4,5), Mcl-1 (6), Cdc 6 (7), and DNA polymerase beta (8) through K48-mediated linkage, thereby targeting these proteins for proteosomal degradation. The tumor suppressor protein ARF (known as p14 ARF in humans and p19 ARF in mice) binds to and inhibits the uibiquitin ligase activity toward p53, resulting in stabilization of p53 and induction of apoptosis (1). HECTH9 has also been shown to polyubiquitinate c-Myc through K63-linkage, which is required for recruitment of p300, activation of c-Myc target genes, and induction of cellular proliferation (9). HECTH9 is overexpressed in colon, lung, and breast cancer (1,9). In addition, defects in HECTH9 result in mental retardation syndromic X-linked Turner type (MRXST) and mental retardation X-linked type 17 (MRX17) syndromes (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein ubiquitination requires the concerted action of the E1, E2, and E3 ubiquitin-conjugating enzymes. Ubiquitin is first activated through ATP-dependent formation of a thiol ester with ubiquitin-activating enzyme E1. The activated ubiquitin is then transferred to a thiol group of ubiquitin-carrier enzyme E2. The final step is the transfer of ubiquitin from E2 to an ε-amino group of the target protein lysine residue, which is mediated by ubiquitin-ligase enzyme E3 (1).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Interferon-stimulated 15 kDa protein (ISG15), also known as ubiquitin cross-reactive protein (UCRP), is a member of the ubiquitin-like protein family and functions in various biological pathways from pregnancy to innate immune responses (1). Expression of ISG15 is stimulated by cellular exposure to type 1 interferons α and β, in addition to infection with viruses such as influenza B (2,3). After exposure to type I interferons, both lymphocytes and monocytes, in addition to some fibroblasts and epithelial cells, release ISG15 into culture medium (1,4). ISG15 has been shown to function as a cytokine, stimulating interferon γ secretion by monocytes and macrophages, proliferation of natural killer cells, and chemotactic responses in neutrophils (4,5). ISG15 has also been shown to function intracellularly, being covalently conjugated to other proteins by E1 (Ube1L), E2 (UbcH8) and E3 ligases via a multi-step process analogous to ubiquitination (6,7). ISG15 is removed from proteins by the ubiquitin processing protease Ubp43 (8). ISG15-protein conjugation (ISGylation) is induced by type 1 interferons, and target proteins include the serine protease inhibitor Serpin 2A, PLCγ1, ERK1/2, Jak1 and Stat1 (9,10). Unlike ubiquitination, ISGylation does not target proteins for degradation, rather ISGylation increases Jak1 and Stat1 activity, enhancing the cellular response to interferons (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: ITCH is a HECT domain-containing E3 ubiquitin ligase, first identified in genetic studies of the mouse agouti locus, in which mutations result in characteristic coat color changes. One particular agouti mutation (non-agouti-lethal 18H) is notable for the development of immunological defects not observed in other agouti mutant mice; these include lymphoid hyperplasia and chronic stomach, lung and skin inflammation (manifest as constant itching). The 18H agouti mutation was traced to a chromosomal inversion that disrupted expression of an adjacent gene in the agouti locus, subsequently termed Itch to reflect the chronic itching phenotype (1-3).Further characterizations revealed that Itch encoded a NEDD4-like E3-ubiquitin ligase capable of catalyzing Lys29, Lys48, and/or Lys63-linked ubiquitination of target proteins, leading to their degradation by the proteosome pathway (4-6). The distinct phenotypes of Itch mutant mice led to the identification of an important regulatory role for ITCH-mediated ubiquitination in inflammatory signaling pathways. For example, ITCH-mediated ubiquitination of the transcription factor JunB was shown to play a direct inhibitory role in regulating expression of the proinflammatory cytokine IL-4. ITCH-null T lymphocytes consequently exhibit increased production of IL-4, leading to biased differentiation of naive CD4+ cells towards the proinflammatory Th2 lineage (7). In accordance with the findings from mutant Itch mouse models, a genetic linkage study in humans identified loss-of-function mutations in ITCH as a direct cause of syndromic multisystem autoimmune disease (SMAD) (8).Notably, targets of ITCH-mediated ubiquitination are not restricted to immune signaling pathways. For example, key mediators of the Hedgehog (9,10), Wnt/β-catenin (11), Hippo (12), and Notch signaling pathways (13,14) have been identified as important targets of ITCH-mediated ubiquitination (2).

$303
100 µl
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Western Blotting

Background: Ubiquitin is a conserved polypeptide unit that plays an important role in the ubiquitin-proteasome pathway. Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the activation component E1; the activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2, then from E2 to ubiquitin ligase E3 for final delivery to the epsilon-NH2 of the target protein lysine residue (1-3). The ubiquitin-proteasome pathway has been implicated in a wide range of normal biological processes and in disease-related abnormalities. Several proteins such as IκB, p53, cdc25A, and Bcl-2 have been shown to be targets for the ubiquitin-proteasome process as part of regulation of cell cycle progression, differentiation, cell stress response, and apoptosis (4-7).

$303
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated K48-linkage Specific Polyubiquitin (D9D5) Rabbit mAb #8081.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Western Blotting

Background: Ubiquitin is a conserved polypeptide unit that plays an important role in the ubiquitin-proteasome pathway. Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the activation component E1; the activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2, then from E2 to ubiquitin ligase E3 for final delivery to the epsilon-NH2 of the target protein lysine residue (1-3). The ubiquitin-proteasome pathway has been implicated in a wide range of normal biological processes and in disease-related abnormalities. Several proteins such as IκB, p53, cdc25A, and Bcl-2 have been shown to be targets for the ubiquitin-proteasome process as part of regulation of cell cycle progression, differentiation, cell stress response, and apoptosis (4-7).

$303
100 µl
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Western Blotting

Background: Ubiquitin is a conserved polypeptide unit that plays an important role in the ubiquitin-proteasome pathway. Ubiquitin can be covalently linked to many cellular proteins by the ubiquitination process, which targets proteins for degradation by the 26S proteasome. Three components are involved in the target protein-ubiquitin conjugation process. Ubiquitin is first activated by forming a thiolester complex with the activation component E1; the activated ubiquitin is subsequently transferred to the ubiquitin-carrier protein E2, then from E2 to ubiquitin ligase E3 for final delivery to the epsilon-NH2 of the target protein lysine residue (1-3). The ubiquitin-proteasome pathway has been implicated in a wide range of normal biological processes and in disease-related abnormalities. Several proteins such as IκB, p53, cdc25A, and Bcl-2 have been shown to be targets for the ubiquitin-proteasome process as part of regulation of cell cycle progression, differentiation, cell stress response, and apoptosis (4-7).