20% off purchase of 3 or more products* | Learn More >>

Product listing: MCM2 (D7G11) XP® Rabbit mAb, UniProt ID P49736 #3619 to p16 INK4A (D7C1M) Rabbit mAb (Alexa Fluor® 647 Conjugate), UniProt ID P42771 #43161

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The minichromosome maintenance (MCM) 2-7 proteins are a family of six related proteins required for initiation and elongation of DNA replication. MCM2-7 bind together to form the heterohexameric MCM complex that is thought to act as a replicative helicase at the DNA replication fork (1-5). This complex is a key component of the pre-replication complex (pre-RC) (reviewed in 1). Cdc6 and CDT1 recruit the MCM complex to the origin recognition complex (ORC) during late mitosis/early G1 phase forming the pre-RC and licensing the DNA for replication (reviewed in 2). Licensing of the chromatin permits the DNA to replicate only once per cell cycle, thereby helping to ensure that genetic alterations and malignant cell growth do not occur (reviewed in 3). Phosphorylation of the MCM2, MCM3, MCM4, and MCM6 subunits appears to regulate MCM complex activity and the initiation of DNA synthesis (6-8). CDK1 phosphorylation of MCM3 at Ser112 during late mitosis/early G1 phase has been shown to initiate complex formation and chromatin loading in vitro (8). Phosphorylation of MCM2 at serine 139 by cdc7/dbf4 coincides with the initiation of DNA replication (9). MCM proteins are removed during DNA replication, causing chromatin to become unlicensed through inhibition of pre-RC reformation. Studies have shown that the MCM complex is involved in checkpoint control by protecting the structure of the replication fork and assisting in restarting replication by recruiting checkpoint proteins after arrest (reviewed in 3,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The minichromosome maintenance (MCM) 2-7 proteins are a family of six related proteins required for initiation and elongation of DNA replication. MCM2-7 bind together to form the heterohexameric MCM complex that is thought to act as a replicative helicase at the DNA replication fork (1-5). This complex is a key component of the pre-replication complex (pre-RC) (reviewed in 1). Cdc6 and CDT1 recruit the MCM complex to the origin recognition complex (ORC) during late mitosis/early G1 phase forming the pre-RC and licensing the DNA for replication (reviewed in 2). Licensing of the chromatin permits the DNA to replicate only once per cell cycle, thereby helping to ensure that genetic alterations and malignant cell growth do not occur (reviewed in 3). Phosphorylation of the MCM2, MCM3, MCM4, and MCM6 subunits appears to regulate MCM complex activity and the initiation of DNA synthesis (6-8). CDK1 phosphorylation of MCM3 at Ser112 during late mitosis/early G1 phase has been shown to initiate complex formation and chromatin loading in vitro (8). Phosphorylation of MCM2 at serine 139 by cdc7/dbf4 coincides with the initiation of DNA replication (9). MCM proteins are removed during DNA replication, causing chromatin to become unlicensed through inhibition of pre-RC reformation. Studies have shown that the MCM complex is involved in checkpoint control by protecting the structure of the replication fork and assisting in restarting replication by recruiting checkpoint proteins after arrest (reviewed in 3,10).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: The minichromosome maintenance (MCM) 2-7 proteins are a family of six related proteins required for initiation and elongation of DNA replication. MCM2-7 bind together to form the heterohexameric MCM complex that is thought to act as a replicative helicase at the DNA replication fork (1-5). This complex is a key component of the pre-replication complex (pre-RC) (reviewed in 1). Cdc6 and CDT1 recruit the MCM complex to the origin recognition complex (ORC) during late mitosis/early G1 phase forming the pre-RC and licensing the DNA for replication (reviewed in 2). Licensing of the chromatin permits the DNA to replicate only once per cell cycle, thereby helping to ensure that genetic alterations and malignant cell growth do not occur (reviewed in 3). Phosphorylation of the MCM2, MCM3, MCM4, and MCM6 subunits appears to regulate MCM complex activity and the initiation of DNA synthesis (6-8). CDK1 phosphorylation of MCM3 at Ser112 during late mitosis/early G1 phase has been shown to initiate complex formation and chromatin loading in vitro (8). Phosphorylation of MCM2 at serine 139 by cdc7/dbf4 coincides with the initiation of DNA replication (9). MCM proteins are removed during DNA replication, causing chromatin to become unlicensed through inhibition of pre-RC reformation. Studies have shown that the MCM complex is involved in checkpoint control by protecting the structure of the replication fork and assisting in restarting replication by recruiting checkpoint proteins after arrest (reviewed in 3,10).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Dog, Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The minichromosome maintenance (MCM) 2-7 proteins are a family of six related proteins required for initiation and elongation of DNA replication. MCM2-7 bind together to form the heterohexameric MCM complex that is thought to act as a replicative helicase at the DNA replication fork (1-5). This complex is a key component of the pre-replication complex (pre-RC) (reviewed in 1). Cdc6 and CDT1 recruit the MCM complex to the origin recognition complex (ORC) during late mitosis/early G1 phase forming the pre-RC and licensing the DNA for replication (reviewed in 2). Licensing of the chromatin permits the DNA to replicate only once per cell cycle, thereby helping to ensure that genetic alterations and malignant cell growth do not occur (reviewed in 3). Phosphorylation of the MCM2, MCM3, MCM4, and MCM6 subunits appears to regulate MCM complex activity and the initiation of DNA synthesis (6-8). CDK1 phosphorylation of MCM3 at Ser112 during late mitosis/early G1 phase has been shown to initiate complex formation and chromatin loading in vitro (8). Phosphorylation of MCM2 at serine 139 by cdc7/dbf4 coincides with the initiation of DNA replication (9). MCM proteins are removed during DNA replication, causing chromatin to become unlicensed through inhibition of pre-RC reformation. Studies have shown that the MCM complex is involved in checkpoint control by protecting the structure of the replication fork and assisting in restarting replication by recruiting checkpoint proteins after arrest (reviewed in 3,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: MDM2, a ubiquitin ligase for p53, plays a central role in regulation of the stability of p53 (1). Akt-mediated phosphorylation of MDM2 at Ser166 and Ser186 increases its interaction with p300, allowing MDM2-mediated ubiquitination and degradation of p53 (2-4). Phosphorylation of MDM2 also blocks its binding to p19ARF, increasing the degradation of p53 (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The breast cancer susceptibility gene, BRCA1, codes for an E3 ubiquitin ligase that functions in the maintenance of genome stability through regulation of DNA damage response and DNA repair. BRCA1 forms at least three distinct complexes (BRCA1 A, B, and C) with other DNA repair proteins, and these interactions are vital for the regulation of BRCA1 function. The BRCA1-Rap80 complex (BRCA1 A complex), including Rap80, BRCC36, BRCC45, Abraxas, and MERIT40/NBA1, functions in G2/M phase checkpoint control (reviewed in 1,2).MERIT40/NBA1 localizes to sites of DNA damage and is required for the appropriate localization of BRCA1 in response to ionizing radiation, as well as maintenance of the BRCA1 A complex (3,4). Proteomics studies have identified Ser29 as a phosphorylated site on MERIT40/NBA1, and the significance of this phosphorylation is under investigation (5-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: MGMT (O-6-methylguanine-DNA methyltransferase) is a DNA repair enzyme that participates in a suicide reaction that specifically removes methyl or alkyl groups from the O(6) position of guanine, restoring guanine to its normal form without causing DNA breaks (1). MGMT protects cells from alkylating toxins, and is an important factor in drug resistance to alkylating therapeutic agents (2,3). It is ubiquitously expressed in normal human tissues (4) and is overexpressed in many types of human tumors, but epigenetically silenced in other tumors. MGMT silencing is a marker associated with poor prognosis, but is a good predictive marker for response to alkylating agent chemotherapy (5).

$269
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: MGMT (O-6-methylguanine-DNA methyltransferase) is a DNA repair enzyme that participates in a suicide reaction that specifically removes methyl or alkyl groups from the O(6) position of guanine, restoring guanine to its normal form without causing DNA breaks (1). MGMT protects cells from alkylating toxins, and is an important factor in drug resistance to alkylating therapeutic agents (2,3). It is ubiquitously expressed in normal human tissues (4) and is overexpressed in many types of human tumors, but epigenetically silenced in other tumors. MGMT silencing is a marker associated with poor prognosis, but is a good predictive marker for response to alkylating agent chemotherapy (5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Microcephalin-1 (MCPH1)/BRIT1 is an early DNA damage response protein named for its mutated state in the human disease primary microcephaly. BRIT1 forms damage-induced nuclear foci, is involved in DNA damage and cell cycle checkpoints as well as regulation of mitosis. BRIT1 function is necessary for DNA damage responses, and the absence of BRIT1 function leads to genome instability. A potential tumor suppressor, BRIT1 expression is reduced in human carcinomas (1-2, reviewed in 3).BRIT1 colocalizes with other DNA repair proteins (53BP1, MDC1, NBS1, ATM, RPA, and ATR) and is required for their activation (2). BRIT1 likely regulates DNA repair through chromatin remodeling in response to DNA damage, allowing access of repair proteins to DNA (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CENP-A, also known as the chromatin-associated protein CSE4 (capping-enzyme suppressor 4-p), is an essential histone H3 variant that replaces canonical histone H3 in centromeric heterochromatin. The inherited localization of the centromere is specified by CENP-A (1). CENP-A deposition to the correct chromosomal location in early G1 phase is regulated by the Mis18 complex, which consists of Mis18-alpha, Mis18-beta, Mis18BP1, RbAp48 and RbAp46 (2).Mis18-alpha deficiency in mice results in inappropriate localization of CENP-A, as well as DNA methylation defects (3). Localization of the Mis18 complex to centromeres is regulated by the mitotic kinase Plk1 (polo-like kinase 1) (4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Mismatch repair (MMR), a conserved process that involves correcting errors made during DNA synthesis, is crucial to the maintenance of genomic integrity. MLH1 is the human homologue of the E. coli MMR gene mutL. MMR requires recognition of a base mismatch or insertion/deletion loop by a MutS homolog followed by recruitment of a MutL heterodimeric complex consisting of MLH1 and PMS1 (MutL-γ), PMS2 (MutL-α) or MLH3 (MutL-γ). Other factors required for MMR in eukaryotes are EXO1, PCNA, RFC, RPA, DNA polymerases and DNA ligase (reviewed in 1). Inactivation of the MLH1 gene causes genome instability and predisposition to cancer (2-5). The MLH1 gene is frequently mutated in hereditary nonpolyposis colon cancer (HNPCC) (6). MLH1 also plays a role in meiotic recombination (7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Mismatch repair (MMR), a conserved process that involves correcting errors made during DNA synthesis, is crucial to the maintenance of genomic integrity. MLH1 is the human homologue of the E. coli MMR gene mutL. MMR requires recognition of a base mismatch or insertion/deletion loop by a MutS homolog followed by recruitment of a MutL heterodimeric complex consisting of MLH1 and PMS1 (MutL-γ), PMS2 (MutL-α) or MLH3 (MutL-γ). Other factors required for MMR in eukaryotes are EXO1, PCNA, RFC, RPA, DNA polymerases and DNA ligase (reviewed in 1). Inactivation of the MLH1 gene causes genome instability and predisposition to cancer (2-5). The MLH1 gene is frequently mutated in hereditary nonpolyposis colon cancer (HNPCC) (6). MLH1 also plays a role in meiotic recombination (7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Mre11, originally described in genetic screens from the yeast Saccharomyces cerevisiae in which mutants were defective in meiotic recombination (1), is a central part of a multisubunit nuclease composed of Mre11, Rad50 and Nbs1 (MRN) (2,3). The MRN complex plays a critical role in sensing, processing and repairing DNA double strand breaks. Defects lead to genomic instability, telomere shortening, aberrant meiosis and hypersensitivity to DNA damage (4). Hypomorphic mutations of Mre11 are found in ataxia-telangiectasia-like disease (ATLD), with phenotypes similar to mutations in ATM that cause ataxia-telangiectasia (A-T), including a predisposition to malignancy in humans (5). Cellular consequences of ATLD include chromosomal instability and defects in the intra-S phase and G2/M checkpoints in response to DNA damage. The MRN complex may directly activate the ATM checkpoint kinase at DNA breaks (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The DNA mismatch repair system (MMR) repairs post-replication DNA, inhibits recombination between non-identical DNA sequences and induces both checkpoint and apoptotic responses following certain types of DNA damage (1). MSH2 (MutS homologue 2) forms the hMutS-α dimer with MSH6 and is an essential component of the mismatch repair process. hMutS-α is part of the BRCA1-associated surveillance complex (BASC), a complex that also contains BRCA1, MLH1, ATM, BLM, PMS2 proteins and the Rad50-Mre11-NBS1 complex (2).Mutations in MSH2 have been found in a large proportion of hereditary non-polyposis colorectal cancer (Lynch Syndrome), the most common form of inherited colorectal cancer in the Western world (3). Mutations have also been associated with other sporadic tumors.

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The DNA mismatch repair system (MMR) repairs post-replication DNA, inhibits recombination between non-identical DNA sequences and induces both checkpoint and apoptotic responses following certain types of DNA damage (1). MSH2 (MutS homologue 2) forms the hMutS-α dimer with MSH6 and is an essential component of the mismatch repair process. hMutS-α is part of the BRCA1-associated surveillance complex (BASC), a complex that also contains BRCA1, MLH1, ATM, BLM, PMS2 proteins and the Rad50-Mre11-NBS1 complex (2).Mutations in MSH2 have been found in a large proportion of hereditary non-polyposis colorectal cancer (Lynch Syndrome), the most common form of inherited colorectal cancer in the Western world (3). Mutations have also been associated with other sporadic tumors.

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: The DNA mismatch repair system (MMR) repairs post-replication DNA, inhibits recombination between nonidentical DNA sequences, and induces both checkpoint and apoptotic responses following certain types of DNA damage (1). MSH2 (MutS homologue 2) forms the hMutS-α dimer with MSH6 and is an essential component of the mismatch repair process. hMutS-α is part of the BRCA1-associated surveillance complex (BASC), a complex that also contains BRCA1, MLH1, ATM, BLM, PMS2 proteins, and the Rad50-Mre11-NBS1 complex (2). Mutations in MSH6 and other MMR proteins have been found in a large proportion of hereditary nonpolyposis colorectal cancer (Lynch Syndrome), the most common form of inherited colorectal cancer in the Western world (3). Mutations in MSH6 have been shown to occur in glioblastoma in response to temozolomide therapy and to promote temozolomide resistance (4).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The DNA mismatch repair system (MMR) repairs post-replication DNA, inhibits recombination between nonidentical DNA sequences, and induces both checkpoint and apoptotic responses following certain types of DNA damage (1). MSH2 (MutS homologue 2) forms the hMutS-α dimer with MSH6 and is an essential component of the mismatch repair process. hMutS-α is part of the BRCA1-associated surveillance complex (BASC), a complex that also contains BRCA1, MLH1, ATM, BLM, PMS2 proteins, and the Rad50-Mre11-NBS1 complex (2). Mutations in MSH6 and other MMR proteins have been found in a large proportion of hereditary nonpolyposis colorectal cancer (Lynch Syndrome), the most common form of inherited colorectal cancer in the Western world (3). Mutations in MSH6 have been shown to occur in glioblastoma in response to temozolomide therapy and to promote temozolomide resistance (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: MutT Homolog 1 (MTH1), an oxidized purine nucleoside triphosphatase, hydrolyzes potentially mutagenic oxidized nucleotide triphosphates, preventing their accumulation in nucleotide pools and their incorporation into DNA and RNA (1). In addition to its function in sanitizing the cell’s nucleotide pool, MTH1 has been shown to have anti-proliferative effects in RAS-transformed tumors (2). Researchers have shown that, while not essential in normal cells, MTH1 is required for cancer cell survival due to increased oxidative damage, and that inhibition of MTH1 activity suppresses cancer growth (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Base excision repair (BER) proteins catalyze the removal of incorrect or damaged bases, including oxidized bases, from DNA. N-glycosylases specific to a given lesion remove the incorrect base as the first step in BER. MYH is the mammalian ortholog of E. coli MutY, a DNA glycosylase that catalyzes the removal of 8-oxoG:A mismatches (1). Several MYH isoforms have been detected in human cells localizing to either the nucleus or the mitochondria (2). MYH interacts with DNA repair proteins and localizes to DNA damage foci after oxidative damage (3). Research studies have shown that mutations in the corresponding MYH gene are associated with human gastric (4) and colorectal (5-7) cancers.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The structural maintenance of chromosomes 2 (SMC2) and 4 (SMC4) proteins are condensin complex subunits that enable chromosome condensation and compaction during migration to opposite poles during anaphase (1,2). Condensin is a general regulator of chromosome architecture that may also regulate gene expression and DNA repair. Condensin complex subunits SMC2 and SMC4 form a functional ATPase essential for chromatin condensation, while three auxiliary subunits regulate ATPase activity. Both SMC2 and SMC4 are found within two distinct condensin complexes (condensin I and II) in higher eukaryotes. Condensin I contains auxiliary subunits NCAPD2, NCAPG, and NCAPH, while condensin II contains related auxiliary proteins NCAPD3, NCAPG2, and NCAPH2 (1,2).Each condensin complex exhibits different localization patterns during the cell cycle and provides for distinct functions during mitosis (3-5). Condensin I is cytoplasmic during interphase and binds chromatin following the breakdown of the nuclear envelope at the end of prophase. Condensin I is required for complete dissociation of cohesin from chromosome arms, for chromosome shortening, and for normal timing of progression through pro-metaphase and metaphase. Mutations in corresponding condensin I genes result in cytokinesis defects due to the persistence of anaphase fibers. Condensin II is nuclear during interphase, but does not bind to chromatin until early prophase where it remains bound until the end of telophase. Condensin II is required for initial chromatin condensation during early prophase. Mutations in corresponding condensin II genes produce high numbers of anaphase bridges resulting from incomplete chromosome segregation. Condensin II complex subunit D3 (NCAPD3) plays a pivotal role in the loading of condensin II onto chromatin and the regulation of chromatin condensation (6,7). NCAPD3 protein contains HEAT repeat clusters that bind to mono-methyl histone H4 Lys20, a histone mark prevalent during mitosis and important for DNA repair and chromatin condensation (6). Increased mono-methyl histone H4 Lys20 levels caused by dissociation of the histone demethylase PHF8 from chromatin and increased expression of the methyltransferase SET8, leads to increased binding of NCAPD3 and condensin II to chromosomes early in mitosis (6). Phosphorylation of NCAPD3 at Thr1415 by CDK1 kinase (cdc2) leads to the recruitment of PLK1 kinase, which hyperphosphorylates condensin II and facilitates mitotic chromosome assembly (7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The NEK family of protein kinases is composed of 11 members in humans that share an amino-terminal catalytic domain related to NIMA, a serine/threonine kinase identified in Aspergillus nidulans. While NIMA is critical for cell cycle progression in fungus, the function of NEK kinases in mammalian cells is largely unknown. NEK1 was first identified by screening mouse cDNA expression libraries and was demonstrated to have dual specificity kinase activity on both tyrosine and serine/threonine sites (1). NEK2 most closely resembles fungal NIMA in its primary structure and is believed to promote the splitting of duplicated centrosomes at the onset of mitosis (2,3). NEK3 is predominantly a cytoplasmic enzyme and its activity shows marginal variation throughout the cell cycle (4). NEK4 is ubiquitously expressed and its expression and subcellular location are not associated with cell cycle (5). NEK6/7 have been suggested to phosphorylate and activate p70 S6 kinase in vitro (6). Expression of an inactive NEK6 mutant arrests cells in M phase and interferes with chromosome segregation (7). NEK8 activity is not cell cycle regulated and may play a role in cell cycle independent microtubule dynamics (8). NEK9 is activated during mitosis and may participate in the activation of NEK6/7 during mitosis (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: N-terminal RCC1 methyltransferase (NRMT), formerly known as methyltransferase-like protein 11A (METTL11A), is a member of the methyltransferase 11 family of proteins and is the first α-N-methyltransferase to be discovered in humans (1-3). Amino-terminal methylation of free α-amino groups is a post-translational modification where an initiating Met residue is cleaved and the exposed α–amino group is mono-, di-, or trimethylated by NRMT (4). NRMT methylates proteins containing an amino-terminal Met-X-Pro-Lys motif, where X is an alanine, proline, or serine residue (4). Substrates of NRMT include the Ran guanine nucleotide-exchange factor (RCC1), SET/TAF-1/PHAP-II, retinoblastoma (Rb), and CENP-B (3-6). α-N-methylation of RCC1 is required for efficient binding to chromatin, securing normal bipolar spindle formation and chromosome segregation (3,5). α-N-methylation of CENP-B also appears to regulate CENP-B binding to centromeric DNA (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The nuclear mitotic apparatus protein (NuMA) is a coiled coil protein involved in the formation and maintenance of the mitotic spindle. NuMA plays a role in chromatin organization during interphase, which influences mammary epithelial differentiation (1,2). During apoptosis, carboxy-terminal cleavage of NuMA may amplify signaling in the cell death pathway (2). NuMA is phosphorylated at numerous sites, with phosphorylation at Ser395 occurring in an ATM/ATR-dependent manner in response to DNA damage (3,4).Phosphorylation at Thr2055 by CDK1 is required for spindle pole association of NuMA at the onset of mitosis. Dephosphorylation by PPP2CA leads to enhancement of NuMA at the cell cortex in anaphase and proper cell-cycle progression (5,6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Mouse, Rat

Application Methods: Western Blotting

Background: The origin recognition complex (ORC) is a highly conserved heterohexameric protein complex that associates with DNA at or near initiation of DNA replication sites. All six ORC subunits are essential for initiation of DNA replication (1-3), and ORC may be involved in regulation of gene expression in response to stress (4). ORC binding to DNA permits the ordered binding of other proteins such as cdc6 and MCMs to form pre-replication complexes (Pre-RCs). Pre-RCs form between telophase and early G1 phase of the cell cycle and are inactivated at the onset of DNA synthesis, allowing coordinated regulation of DNA replication and cell division (5). Modification of one or more of the six ORC subunits may be responsible for its inactivation during S phase, but the chromatin binding behavior of the ORC subunits during the cell division cycle is still under investigation (6-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The origin recognition complex (ORC) is a highly conserved heterohexameric protein complex that associates with DNA at or near initiation of DNA replication sites. All six ORC subunits are essential for initiation of DNA replication (1-3), and ORC may be involved in regulation of gene expression in response to stress (4). ORC binding to DNA permits the ordered binding of other proteins such as cdc6 and MCMs to form pre-replication complexes (Pre-RCs). Pre-RCs form between telophase and early G1 phase of the cell cycle and are inactivated at the onset of DNA synthesis, allowing coordinated regulation of DNA replication and cell division (5). Modification of one or more of the six ORC subunits may be responsible for its inactivation during S phase, but the chromatin binding behavior of the ORC subunits during the cell division cycle is still under investigation (6-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The origin recognition complex (ORC) is a highly conserved heterohexameric protein complex that associates with DNA at or near initiation of DNA replication sites. All six ORC subunits are essential for initiation of DNA replication (1-3), and ORC may be involved in regulation of gene expression in response to stress (4). ORC binding to DNA permits the ordered binding of other proteins such as cdc6 and MCMs to form pre-replication complexes (Pre-RCs). Pre-RCs form between telophase and early G1 phase of the cell cycle and are inactivated at the onset of DNA synthesis, allowing coordinated regulation of DNA replication and cell division (5). Modification of one or more of the six ORC subunits may be responsible for its inactivation during S phase, but the chromatin binding behavior of the ORC subunits during the cell division cycle is still under investigation (6-7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Human p14 ARF (p19 ARF in mouse) is a pro-apoptotic cell cycle regulator frequently inactive in human tumors (1). Basal expression of p14 ARF is low in most cell types, but accumulation of this protein occurs in response to oncogene expression (2,3). Increased p14 ARF levels facilitate MDM2 degradation, leading to increased p53 protein levels and subsequent cell cycle arrest and/or apoptosis (4). While most p14 ARF signaling has traditionally thought to be p53-dependent, more recent reports have described p53-independent p14 ARF signaling leading to cell cycle arrest and apoptosis (5,6).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, IHC-Leica® Bond™, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Human p14 ARF (p19 ARF in mouse) is a pro-apoptotic cell cycle regulator frequently inactive in human tumors (1). Basal expression of p14 ARF is low in most cell types, but accumulation of this protein occurs in response to oncogene expression (2,3). Increased p14 ARF levels facilitate MDM2 degradation, leading to increased p53 protein levels and subsequent cell cycle arrest and/or apoptosis (4). While most p14 ARF signaling has traditionally thought to be p53-dependent, more recent reports have described p53-independent p14 ARF signaling leading to cell cycle arrest and apoptosis (5,6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Members of the INK4 family of cyclin dependent kinase inhibitors include p16INK4A, p15INK4B, p18INK4C and p19INK4D. The INK4 family members inhibit cyclin dependent kinases 4 and 6 (CDK4 and CDK6), causing cell cycle arrest in G1 phase. The INK4A-ARF-INK4B locus on chromosome 9p21, frequently lost in human cancer, encodes the INK4 family members p16INK5A and p15INK4B, as well as the unrelated protein, ARF (1).p16 INK4A expression, typically repressed in the absence of stress, is thought to drive cells into senescence, and p16 INK4A expression is a commonly used marker of senescent cells (2). p16INK4A protein expression is often altered in human cancer (3,4), and high expression is currently used as a predictive biomarker in cervical cancer (5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated p16 INK4A (D7C1M) Rabbit mAb #80772.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Members of the INK4 family of cyclin dependent kinase inhibitors include p16INK4A, p15INK4B, p18INK4C and p19INK4D. The INK4 family members inhibit cyclin dependent kinases 4 and 6 (CDK4 and CDK6), causing cell cycle arrest in G1 phase. The INK4A-ARF-INK4B locus on chromosome 9p21, frequently lost in human cancer, encodes the INK4 family members p16INK5A and p15INK4B, as well as the unrelated protein, ARF (1).p16 INK4A expression, typically repressed in the absence of stress, is thought to drive cells into senescence, and p16 INK4A expression is a commonly used marker of senescent cells (2). p16INK4A protein expression is often altered in human cancer (3,4), and high expression is currently used as a predictive biomarker in cervical cancer (5).