Dropping with the temps: Cool deals on CST mAbs | Learn More >>

Product listing: Phospho-Rb (Ser807/811) (D20B12) XP® Rabbit mAb, UniProt ID P06400 #8516 to Rb (D20) Rabbit mAb, UniProt ID P06400 #9313

$134
20 µl
$336
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The retinoblastoma tumor suppressor protein Rb regulates cell proliferation by controlling progression through the restriction point within the G1-phase of the cell cycle (1). Rb has three functionally distinct binding domains and interacts with critical regulatory proteins including the E2F family of transcription factors, c-Abl tyrosine kinase, and proteins with a conserved LXCXE motif (2-4). Cell cycle-dependent phosphorylation by a CDK inhibits Rb target binding and allows cell cycle progression (5). Rb inactivation and subsequent cell cycle progression likely requires an initial phosphorylation by cyclin D-CDK4/6 followed by cyclin E-CDK2 phosphorylation (6). Specificity of different CDK/cyclin complexes has been observed in vitro (6-8) and cyclin D1 is required for Ser780 phosphorylation in vivo (9).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The Ras family small GTPase Ran is involved in nuclear envelope formation, assembly of the mitotic spindle, and nuclear transport (1,2). Like other small GTPases, Ran is active in its GTP-bound form and inactive in its GDP-bound form. Nuclear RanGTP concentration is maintained through nuclear localization of guanine nucleotide exchange factor (GEF) activity, which catalyzes the exchange of bound GDP for GTP. Regulator of chromatin condensation 1 (RCC1) is the only known RanGEF (3). RCC1 is dynamically chromatin-bound throughout the cell cycle, and this localization is required for mitosis to proceed normally (4,5). Appropriate association of RCC1 with chromatin is regulated through amino-terminal phosphorylation (5,6) and methylation (7). RCC1 regulation of RanGTP levels in response to histone modifications regulates nuclear import during apoptosis (8). In mitosis RCC1 is phosphorylated at Ser11, possibly by cyclin B/cdc2 (9-11). This phosphorylation may play a role in RCC1 interaction with chromatin and RCC1 RanGEF activity (6).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: RPA70 (HSSB, REPA1, RF-A, RP-A, p70) is a component of a heterotrimeric complex, composed of 70, 32/30 and 14 kDa subunits, collectively known as RPA. RPA is a single stranded DNA binding protein, whose DNA binding activity is believed to reside entirely in the 70 kDa subunit. The complex is required for almost all aspects of cellular DNA metabolism such as DNA replication (1-3), recombination, cell cycle and DNA damage checkpoints, and all major types of DNA repair including nucleotide excision, base excision, mismatch and double-strand break repairs (4-7). In response to genotoxic stress in eukaryotic cells, RPA has been shown to associate with the Rad9/Rad1/Hus1 (9-1-1) checkpoint complex (8). RPA is hyperphosphorylated upon DNA damage or replication stress by checkpoint kinases including ataxia telangiectasia mutated (ATM), ATM and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK) (9-11). Phosphorylation of RPA32 occurs at serines 4, 8 and 33 (11). Hyperphosphorylation may alter RPA-DNA and RPA-protein interactions. In addition to the checkpoint partners, RPA interacts with a wide variety of protein partners, including proteins required for normal replication such as RCF, PCNA and Pol α, and also proteins involved in SV40 replication, such as DNA polymerase I and SV40 large T antigen (10,12).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Western Blotting

Background: RNA polymerase II (RNAPII) is a large multi-protein complex that functions as a DNA-dependent RNA polymerase, catalyzing the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates (1). The largest subunit, RNAPII subunit B1 (Rpb1), also known as RNAPII subunit A (POLR2A), contains a unique heptapeptide sequence (Tyr1,Ser2,Pro3,Thr4,Ser5,Pro6,Ser7), which is repeated up to 52 times in the carboxy-terminal domain (CTD) of the protein (1). This CTD heptapeptide repeat is subject to multiple post-translational modifications, which dictate the functional state of the polymerase complex. Phosphorylation of the CTD during the active transcription cycle integrates transcription with chromatin remodeling and nascent RNA processing by regulating the recruitment of chromatin modifying enzymes and RNA processing proteins to the transcribed gene (1). During transcription initiation, RNAPII contains a hypophosphorylated CTD and is recruited to gene promoters through interactions with DNA-bound transcription factors and the Mediator complex (1). The escape of RNAPII from gene promoters requires phosphorylation at Ser5 by CDK7, the catalytic subunit of transcription factor IIH (TFIIH) (2). Phosphorylation at Ser5 mediates the recruitment of RNA capping enzymes, in addition to histone H3 Lys4 methyltransferases, which function to regulate transcription initiation and chromatin structure (3,4). After promoter escape, RNAPII proceeds down the gene to an intrinsic pause site, where it is halted by the negative elongation factors NELF and DSIF (5). At this point, RNAPII is unstable and frequently aborts transcription and dissociates from the gene. Productive transcription elongation requires phosphorylation at Ser2 by CDK9, the catalytic subunit of the positive transcription elongation factor P-TEFb (6). Phosphorylation at Ser2 creates a stable transcription elongation complex and facilitates recruitment of RNA splicing and polyadenylation factors, in addition to histone H3 Lys36 methyltransferases, which function to promote elongation-compatible chromatin (7,8). Ser2/Ser5-phosphorylated RNAPII then transcribes the entire length of the gene to the 3' end, where transcription is terminated. RNAPII dissociates from the DNA and is recycled to the hypophosphorylated form by various CTD phosphatases (1).In addition to Ser2/Ser5 phosphorylation, Ser7 of the CTD heptapeptide repeat is also phosphorylated during the active transcription cycle. Phosphorylation at Ser7 is required for efficient transcription of small nuclear (sn) RNA genes (9,10). snRNA genes, which are neither spliced nor poly-adenylated, are structurally different from protein-coding genes. Instead of a poly(A) signal found in protein-coding RNAs, snRNAs contain a conserved 3'-box RNA processing element, which is recognized by the Integrator snRNA 3' end processing complex (11,12). Phosphorylation at Ser7 by CDK7 during the early stages of transcription facilitates recruitment of RPAP2, which dephosphorylates Ser5, creating a dual Ser2/Ser7 phosphorylation mark that facilitates recruitment of the Integrator complex and efficient processing of nascent snRNA transcripts (13-15).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Structural maintenance of chromosomes 1 (SMC1) protein is a chromosomal protein member of the cohesin complex that enables sister chromatid cohesion and plays a role in DNA repair (1,2). ATM/NBS1-dependent phosphorylation of SMC1 occurs at Ser957 and Ser966 in response to ionizing radiation (IR) as part of the intra-S-phase DNA damage checkpoint (3). SMC1 phosphorylation is ATM-independent in cells subjected to other forms of DNA damage, including UV light and hydroxyurea treatment (4). While phosphorylation of SMC1 is required for activation of the IR-induced intra-S-phase checkpoint, the precise mechanism is not well understood and may involve a conformational change that affects SMC1-SMC3 interaction (3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Structural maintenance of chromosomes 1 (SMC1) protein is a chromosomal protein member of the cohesin complex that enables sister chromatid cohesion and plays a role in DNA repair (1,2). ATM/NBS1-dependent phosphorylation of SMC1 occurs at Ser957 and Ser966 in response to ionizing radiation (IR) as part of the intra-S-phase DNA damage checkpoint (3). SMC1 phosphorylation is ATM-independent in cells subjected to other forms of DNA damage, including UV light and hydroxyurea treatment (4). While phosphorylation of SMC1 is required for activation of the IR-induced intra-S-phase checkpoint, the precise mechanism is not well understood and may involve a conformational change that affects SMC1-SMC3 interaction (3).

$134
20 µl
$336
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Transforming acid coiled-coil (TACC) proteins are a family of proteins characterized by a common coiled-coil motif of approximately 200 amino acids at the carboxy-terminal end (1). Three family members have been identified in humans: TACC1, TACC2, and TACC3. These proteins are thought to be involved in centrosomal microtubule assembly and have been mapped to chromosomal regions that are disrupted in some cancers (reviewed in 2). TACC3 has been shown to be upregulated in many cancer cell lines (3). When phosphorylated at Ser558 by Aurora A, mammalian TACC3 is localized to mitotic spindles and increases microtubule stability (4,5). For this reason, it has been suggested that monitoring the localization of phosphorylated TACC3 would be an effective way to determine the efficacy of Aurora A inhibitors that show promise as anti-cancer drugs (6,7). In addition, studies have shown that TACC3 could be useful as a prognostic marker for non-small cell lung cancer (8).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Entry of all eukaryotic cells into mitosis is regulated by activation of cdc2 kinase. The critical regulatory step in activating cdc2 during progression into mitosis appears to be dephosphorylation of Tyr15 and Thr14 (1,2). Phosphorylation at Tyr15 and Thr14 and inhibition of cdc2 is carried out by Wee1 and Myt1 protein kinases, while Tyr15 dephosphorylation and activation of cdc2 is carried out by the cdc25 phosphatase (1,3,4). Hyperphosphorylation and inactivation of Myt1 in mitosis suggests that one or more kinases activated at the G2/M transition negatively regulates Myt1 activity. Kinases shown to phosphorylate Myt1 include cdc2, p90RSK, Akt, and Plk1 (5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: PICH is a helicase of the SNF2 family of ATPases and is essential for proper chromosome segregation during mitosis (1). While PICH was originally proposed to participate in spindle assembly checkpoint signaling (1), that function was subsequently called into question (2). When phosphorylated at Thr1063 by CDK1, PICH binds the polo-box domain of the mitotic kinase PLK1 (1) and targets it to chromosome arms (3), where it appears to facilitate proper chromosome arm cohesion (4). PICH is also a substrate of PLK1 (1). Localized to the cytoplasm during interphase, PICH begins to accumulate at centromeres and kinetochores in prometaphase (4). As chromosomes begin to separate at the onset of anaphase, PICH associates with ultrafine threads between sister centromeres thought to be composed of entangled DNA (5), a natural consequence of DNA replication. PICH is proposed to cooperate with BLM, a RecQ-like helicase implicated in the genetic disorder Bloom’s Syndrome, to displace centromeric histones along these threads, thus enabling them to span large distances without breaking (6). This provides a temporal window for topoisomerase IIα-mediated disentanglement (7). Defects in PICH or BLM disrupt proper chromatid segregation and result in the formation of micronuclei (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: PITSLRE, alternatively known as cell division kinase 11 (CDK11), is the result of duplication of the CDK11 gene (1). CDK11A and CDK11B encode nearly identical serine/threonine protein kinases, PITSLREB and PITSLREA respectively, both belonging to the p34CDC2 family of protein kinases (2). Full-length PITSLRE/CDK11 (commonly referred to as CDK11p110) is expressed ubiquitously throughout the cell cycle whereas a smaller, alternate transcript (CDK11p58), the result of internal ribosomal entry, is expressed only during the G2/M transition where it promotes centrosome maturation and spindle formation (3-5). During induction of apoptosis by Fas or TNF, or anoikis, PITSLRE/CDK11 is cleaved by caspases to generate p110C, an approximately 46 kDa protein that contains the catalytically active kinase domain of PITSLRE/CDK11 that interacts with and inhibits p21-activated kinase (PAK1) activity (6-8). Full length PITSLRE/CDK11 (CDK11p110) appears to participate in pre-mRNA splicing events. This is demonstrated by the observation that CDK11p110 interacts with numerous splicing factors including RNPS1, 9G8/SRSF7 and cyclin L and that CDK11p110 can phosphorylate and inhibit the splicing activity of 9G8/SRSF7 (9-11).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: At least four distinct polo-like kinases exist in mammalian cells: PLK1, PLK2, PLK3, and PLK4/SAK (1). PLK1 apparently plays many roles during mitosis, particularly in regulating mitotic entry and exit. The mitosis promoting factor (MPF), cdc2/cyclin B1, is activated by dephosphorylation of cdc2 (Thr14/Tyr15) by cdc25C. PLK1 phosphorylates cdc25C at Ser198 and cyclin B1 at Ser133 causing translocation of these proteins from the cytoplasm to the nucleus (2-5). PLK1 phosphorylation of Myt1 at Ser426 and Thr495 has been proposed to inactivate Myt1, one of the kinases known to phosphorylate cdc2 at Thr14/Tyr15 (6). Polo-like kinases also phosphorylate the cohesin subunit SCC1, causing cohesin displacement from chromosome arms that allow for proper cohesin localization to centromeres (7). Mitotic exit requires activation of the anaphase promoting complex (APC) (8), a ubiquitin ligase responsible for removal of cohesin at centromeres, and degradation of securin, cyclin A, cyclin B1, Aurora A, and cdc20 (9). PLK1 phosphorylation of the APC subunits Apc1, cdc16, and cdc27 has been demonstrated in vitro and has been proposed as a mechanism by which mitotic exit is regulated (10,11).Substitution of Thr210 with Asp has been reported to elevate PLK1 kinase activity and delay/arrest cells in mitosis, while a Ser137Asp substitution leads to S-phase arrest (12). In addition, while DNA damage has been found to inhibit PLK1 kinase activity, the Thr210Asp mutant is resistant to this inhibition (13). PLK1 has been reported to be phosphorylated in vivo at Ser137 and Thr210 in mitosis; DNA damage prevents phosphorylation at these sites (14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: At least five distinct polo-like kinases exist in mammalian cells: PLK1, PLK2, PLK3, PLK4/SAK, and the non-catalytic PLK5 protein (1). The p53-induced PLK2 functions in centriole duplication, as well as at spindle and S phase checkpoints (3-5). Research studies show that PLK2 expression is related to chemosensitivity in ovarian cancer. Downregulation of PLK2 expression in chemosensitive ovarian cancer cells is associated with a greater chance of relapse in patients following specific treatment regimens (6). PLK2 can phosphorylate α-synuclein at Ser129, which is a site shown to be involved in diseases of the central nervous system (7,8). Polo-like kinase 2 also phosphorylates GEFs and GAPs, regulating Ras and Rap small GTPase function in neurons (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: At least 4 distinct polo-like kinases exist in mammalian cells: PLK1, PLK2, PLK3 and PLK4/SAK (1). Like the other PLK family members, PLK3 contains an amino-terminal catalytic domain and a conserved carboxy-terminal domain termed the Polo box (2). PLK3, also called proliferation-related kinase (Prk) (3), was originally described as a fibroblast growth factor (FGF)-inducible kinase (Fnk) and identified as an immediate-early response gene responsive to FGF-1 and other mitogens (4). PLK3 is a cytokine-inducible serine/threonine kinase whose protein expression is cell cycle regulated. Though its expression is found primarily in G1 phase of the cell cycle, PLK3 is detected in G0 and in late telophase prior to cytokinesis (5). Like the other PLK family members, PLK3 functions mainly as a regulator of the cell cycle. Specifically, PLK3 is required for entry into S phase and is a critical regulator of G1 events, as indicated by RNAi-induced PLK3-depleted cells (2). PLK3 is also involved in the regulation of DNA damage response via phosphorylation of p53 on Ser20 (6). PLK3 may act as a tumor suppressor as Plk3-deficient mice develop spontaneous tumors in various organs (7). Unlike PLK1, PLK3 expression is down regulated in cancers including lung (3), head and neck (8), and colon (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Protein phosphatase type 2A (PP2A) is an essential protein serine/threonine phosphatase that is conserved in all eukaryotes. PP2A is a key enzyme within various signal transduction pathways as it regulates fundamental cellular activities such as DNA replication, transcription, translation, metabolism, cell cycle progression, cell division, apoptosis and development (1-3). The core enzyme consists of catalytic C and regulatory A (or PR65) subunits, with each subunit represented by α and β isoforms (1). Additional regulatory subunits belong to four different families of unrelated proteins. Both the B (or PR55) and B' regulatory protein families contain α, β, γ and δ isoforms, with the B' family also including an ε protein. B'' family proteins include PR72, PR130, PR59 and PR48 isoforms, while striatin (PR110) and SG2NA (PR93) are both members of the B''' regulatory protein family. These B subunits competitively bind to a shared binding site on the core A subunit (1). This variable array of holoenzyme components, particularly regulatory B subunits, allows PP2A to act in a diverse set of functions. PP2A function is regulated by expression, localization, holoenzyme composition and post-translational modification. Phosphorylation of PP2A at Tyr307 by Src occurs in response to EGF or insulin and results in a substantial reduction of PP2A activity (4). Reversible methylation on the carboxyl group of Leu309 of PP2A has been observed (5,6). Methylation alters the conformation of PP2A, as well as its localization and association with B regulatory subunits (6-8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Protein phosphatase type 2A (PP2A) is an essential protein serine/threonine phosphatase that is conserved in all eukaryotes. PP2A is a key enzyme within various signal transduction pathways as it regulates fundamental cellular activities such as DNA replication, transcription, translation, metabolism, cell cycle progression, cell division, apoptosis and development (1-3). The core enzyme consists of catalytic C and regulatory A (or PR65) subunits, with each subunit represented by α and β isoforms (1). Additional regulatory subunits belong to four different families of unrelated proteins. Both the B (or PR55) and B' regulatory protein families contain α, β, γ and δ isoforms, with the B' family also including an ε protein. B'' family proteins include PR72, PR130, PR59 and PR48 isoforms, while striatin (PR110) and SG2NA (PR93) are both members of the B''' regulatory protein family. These B subunits competitively bind to a shared binding site on the core A subunit (1). This variable array of holoenzyme components, particularly regulatory B subunits, allows PP2A to act in a diverse set of functions. PP2A function is regulated by expression, localization, holoenzyme composition and post-translational modification. Phosphorylation of PP2A at Tyr307 by Src occurs in response to EGF or insulin and results in a substantial reduction of PP2A activity (4). Reversible methylation on the carboxyl group of Leu309 of PP2A has been observed (5,6). Methylation alters the conformation of PP2A, as well as its localization and association with B regulatory subunits (6-8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Protein phosphatase type 2A (PP2A) is an essential protein serine/threonine phosphatase that is conserved in all eukaryotes. PP2A is a key enzyme within various signal transduction pathways as it regulates fundamental cellular activities such as DNA replication, transcription, translation, metabolism, cell cycle progression, cell division, apoptosis and development (1-3). The core enzyme consists of catalytic C and regulatory A (or PR65) subunits, with each subunit represented by α and β isoforms (1). Additional regulatory subunits belong to four different families of unrelated proteins. Both the B (or PR55) and B' regulatory protein families contain α, β, γ and δ isoforms, with the B' family also including an ε protein. B'' family proteins include PR72, PR130, PR59 and PR48 isoforms, while striatin (PR110) and SG2NA (PR93) are both members of the B''' regulatory protein family. These B subunits competitively bind to a shared binding site on the core A subunit (1). This variable array of holoenzyme components, particularly regulatory B subunits, allows PP2A to act in a diverse set of functions. PP2A function is regulated by expression, localization, holoenzyme composition and post-translational modification. Phosphorylation of PP2A at Tyr307 by Src occurs in response to EGF or insulin and results in a substantial reduction of PP2A activity (4). Reversible methylation on the carboxyl group of Leu309 of PP2A has been observed (5,6). Methylation alters the conformation of PP2A, as well as its localization and association with B regulatory subunits (6-8).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated PP2A C Subunit (52F8D8) Antibody #2259.
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: Protein phosphatase type 2A (PP2A) is an essential protein serine/threonine phosphatase that is conserved in all eukaryotes. PP2A is a key enzyme within various signal transduction pathways as it regulates fundamental cellular activities such as DNA replication, transcription, translation, metabolism, cell cycle progression, cell division, apoptosis and development (1-3). The core enzyme consists of catalytic C and regulatory A (or PR65) subunits, with each subunit represented by α and β isoforms (1). Additional regulatory subunits belong to four different families of unrelated proteins. Both the B (or PR55) and B' regulatory protein families contain α, β, γ and δ isoforms, with the B' family also including an ε protein. B'' family proteins include PR72, PR130, PR59 and PR48 isoforms, while striatin (PR110) and SG2NA (PR93) are both members of the B''' regulatory protein family. These B subunits competitively bind to a shared binding site on the core A subunit (1). This variable array of holoenzyme components, particularly regulatory B subunits, allows PP2A to act in a diverse set of functions. PP2A function is regulated by expression, localization, holoenzyme composition and post-translational modification. Phosphorylation of PP2A at Tyr307 by Src occurs in response to EGF or insulin and results in a substantial reduction of PP2A activity (4). Reversible methylation on the carboxyl group of Leu309 of PP2A has been observed (5,6). Methylation alters the conformation of PP2A, as well as its localization and association with B regulatory subunits (6-8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Protein phosphatase type 2A (PP2A) is an essential protein serine/threonine phosphatase that is conserved in all eukaryotes. PP2A is a key enzyme within various signal transduction pathways as it regulates fundamental cellular activities such as DNA replication, transcription, translation, metabolism, cell cycle progression, cell division, apoptosis and development (1-3). The core enzyme consists of catalytic C and regulatory A (or PR65) subunits, with each subunit represented by α and β isoforms (1). Additional regulatory subunits belong to four different families of unrelated proteins. Both the B (or PR55) and B' regulatory protein families contain α, β, γ and δ isoforms, with the B' family also including an ε protein. B'' family proteins include PR72, PR130, PR59 and PR48 isoforms, while striatin (PR110) and SG2NA (PR93) are both members of the B''' regulatory protein family. These B subunits competitively bind to a shared binding site on the core A subunit (1). This variable array of holoenzyme components, particularly regulatory B subunits, allows PP2A to act in a diverse set of functions. PP2A function is regulated by expression, localization, holoenzyme composition and post-translational modification. Phosphorylation of PP2A at Tyr307 by Src occurs in response to EGF or insulin and results in a substantial reduction of PP2A activity (4). Reversible methylation on the carboxyl group of Leu309 of PP2A has been observed (5,6). Methylation alters the conformation of PP2A, as well as its localization and association with B regulatory subunits (6-8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein Phosphatase 2A subunit isoform R5-δ (PPP2R5D) belongs to the R5/B'/B56 family of the regulatory subunit B of serine/threonine phosphatase 2A (1). PPP2R5D (B-δ) is structurally related to the other components of subunit B, B-α. PPP2R5D lacks the WD-40 repeats that are important for protein-protein interaction (1-2). Structural differences may contribute to distinct down stream effects (3) and directing PP2A nuclear localization (4). Current evidence suggests that in contrast to B-α, PPP2R5D modulates the TGF-β/Actividin/Nodal signaling pathways by restricting the downstream activities of the type I TGF-β receptors, ALK4, and ALK5 (3)

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The human checkpoint protein Rad17 and its fission and budding yeast orthologues (Schizosaccharomyces pombe Rad17 and Saccharomyces cerevisiae Rad24, respectively) are involved in the activation of checkpoint signals in response to DNA damage or disruption of DNA synthesis (1-4). Treatment of human cells with genotoxic agents induces ATM/ATR-dependent phosphorylation of Rad17 at Ser635 and Ser645. Rad17 phosphorylation is a critical early event during checkpoint signaling in DNA-damaged cells (5-7).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: DNA damage, if not repaired, can lead to genome instability and tumorigenesis. Eukaryotic cells use multiple (sometimes overlapping) signaling pathways to respond to agents that cause various types of DNA lesions. Downstream molecules in DNA repair pathways converge on the sites of DNA damage, resulting in cell cycle arrest and repair or apoptosis (1). Rad18 is an E3 ubiquitin ligase recruited to sites of DNA damage. Along with the E2 ubiquitin ligase Rad6, Rad18 is responsible for monoubiquitination of DNA damage proteins including the replication clamp PCNA and the Fanconi anemia core protein FANCD2. Monoubiquitination of these proteins signals to downstream effector molecules and results in the repair of either post-replication repair lesions via the translesion synthesis (TLS) pathway or DNA double strand breaks via homologous recombination (2-4). Phospho-proteomic studies indicate that Ser403 of Rad18 may be phosphorylated by ATM/ATR in response to DNA damage-inducing agents (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: DNA double-strand breaks (DSBs) are potentially hazardous lesions that can be induced by ionizing radiation (IR), radiomimetic chemicals, or DNA replication inhibitors. Cells sense and repair DSBs via two distinct but partly overlapping signaling pathways, nonhomologous end joining (NHEJ) and homologous recombination (HR). Research studies have shown that defects in both pathways are associated with human disease, including cancer (reviewed in 1).DSBs that arise during S or G2 phase are repaired via homologous recombination (HR), using the replicated sister chromatid as a repair template. Rad51 recombinase, a eukaryotic homologue of E. coli RecA, polymerizes and forms a filament along single-stranded DNA, mediating HR with the help of auxiliary proteins, including Rad54 and BRCA2 (reviewed in 2,3). BRCA2 binds Rad51 and targets it to single-stranded DNA, allowing it to displace replication protein A (RPA) (4). Five Rad51 paralogs exist in vertebrates (XRCC2, XRCC3, Rad51B, Rad51C, and Rad51D) and they all appear to be required for efficient HR (5).Researchers have found that mutations in the Rad51 gene may be related to breast cancer risk (6). Some studies have implicated Rad51 as a potential marker for pancreatic cancer (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: DNA double-strand breaks (DSBs) are potentially hazardous lesions that can be induced by ionizing radiation (IR), radiomimetic chemicals, or DNA replication inhibitors. Cells sense and repair DSBs via two distinct but partly overlapping signaling pathways, nonhomologous end joining (NHEJ) and homologous recombination (HR). Defects in both pathways have been associated with human disease, including cancer (1). The DNA repair and recombination protein RAD54-like (Rad54, RAD54L) is a Swi2/Snf2 family DNA helicase that is involved in homologous recombination DNA repair. Rad54 is a double-stranded DNA-dependent ATPase that translocates in a processive manner along double-stranded DNA. The Rad54 helicase interacts with the Rad51 recombinase to regulate its DNA binding and strand exchange activities during homologous recombination (2-4). Mutations in the corresponding RAD54L gene are associated with multiple forms of human cancer, including non-Hodgkin's lymphoma, breast cancer, and parathyroid adenoma (5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: DNA damage resulting from genotoxic stress activates cellular checkpoints that prevent or delay cell division until either damaged DNA is repaired or the cell follows an apoptotic pathway. The Rad9 homolog A (Rad9A, Rad9) protein is part of a checkpoint protein complex that acts as an early sensor of DNA damage. Together with the Hus1 and Rad1 checkpoint proteins, Rad9 forms a heterotrimeric 9-1-1 complex with a ring structure similar to the processivity factor PCNA. The 9-1-1 complex induces multiple signaling pathways, including the ATM and ATR-activated DNA repair pathways (1,2). A functional 9-1-1 complex is required for ATR-dependent S phase checkpoint signaling (3).The 9-1-1 complex interacts with DNA topoisomerase 2-binding protein 1 (TopBP1) in response to DNA damage, activating ATR and causing signal amplification through further recruitment of TopBP1 (4). The 9-1-1 complex interacts with DNA mismatch repair proteins MSH2, MSH3, and MSH6 to play a role in mismatch repair (5). During an error-free DNA damage tolerance process, the 9-1-1 complex cooperates with polyubiquitinated PCNA and Exo1 nuclease to support switching of the replicative polymerase to the undamaged template (6).Research studies indicate that the two Rad9 paralogues (Rad9A and Rad9B) can both functionally complement one another and display distinct biological functions.Specifically, Rad9B senses nucleolar stress and causes a delay in the cell cycle at G1/S phase (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The breast cancer type 1 susceptibility protein (BRCA1) is an E3 ubiquitin ligase that functions in the maintenance of genome stability through regulation of the DNA damage response and DNA repair. BRCA1 protein forms at least three distinct complexes (BRCA1 A, B, and C) with other DNA repair proteins, and these interactions are vital for regulation of BRCA1 protein function. The BRCA1-RAP80 complex (BRCA1 A complex) includes RAP80, BRCC36, BRE, Abraxas, and NBA1 and functions in G2/M phase checkpoint control (reviewed in 1,2).The ubiquitously expressed receptor-associated protein 80 (RAP80, UIMC1) is required for recruitment and stability of the BRCA1 A complex at sites of DNA damage (3). Research studies indicate that the absence of RAP80 in cells results in increased sensitivity to the topoisomerase II inhibitor etoposide (4). In the absence of functional RAP80, BRCA1 A complex function is suppressed and cells become more sensitive to DNA damage-induced genome instability (5,6). Phosphorylation of RAP80 by CDK1/Cyclin B at Ser177 regulates RAP80 function at the mitotic checkpoint (7). A naturally occurring in-frame deletion mutant within RAP80 likely alters RAP80 protein-protein interactions and is associated with an increase in chromosomal abnormalities (8,9).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Rb (4H1) Mouse mAb #9309.
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Pig

Application Methods: Flow Cytometry

Background: The retinoblastoma tumor suppressor protein Rb regulates cell proliferation by controlling progression through the restriction point within the G1-phase of the cell cycle (1). Rb has three functionally distinct binding domains and interacts with critical regulatory proteins including the E2F family of transcription factors, c-Abl tyrosine kinase, and proteins with a conserved LXCXE motif (2-4). Cell cycle-dependent phosphorylation by a CDK inhibits Rb target binding and allows cell cycle progression (5). Rb inactivation and subsequent cell cycle progression likely requires an initial phosphorylation by cyclin D-CDK4/6 followed by cyclin E-CDK2 phosphorylation (6). Specificity of different CDK/cyclin complexes has been observed in vitro (6-8) and cyclin D1 is required for Ser780 phosphorylation in vivo (9).

$111
20 µl
$260
100 µl
$630
300 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Pig

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The retinoblastoma tumor suppressor protein Rb regulates cell proliferation by controlling progression through the restriction point within the G1-phase of the cell cycle (1). Rb has three functionally distinct binding domains and interacts with critical regulatory proteins including the E2F family of transcription factors, c-Abl tyrosine kinase, and proteins with a conserved LXCXE motif (2-4). Cell cycle-dependent phosphorylation by a CDK inhibits Rb target binding and allows cell cycle progression (5). Rb inactivation and subsequent cell cycle progression likely requires an initial phosphorylation by cyclin D-CDK4/6 followed by cyclin E-CDK2 phosphorylation (6). Specificity of different CDK/cyclin complexes has been observed in vitro (6-8) and cyclin D1 is required for Ser780 phosphorylation in vivo (9).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: The retinoblastoma tumor suppressor protein Rb regulates cell proliferation by controlling progression through the restriction point within the G1-phase of the cell cycle (1). Rb has three functionally distinct binding domains and interacts with critical regulatory proteins including the E2F family of transcription factors, c-Abl tyrosine kinase, and proteins with a conserved LXCXE motif (2-4). Cell cycle-dependent phosphorylation by a CDK inhibits Rb target binding and allows cell cycle progression (5). Rb inactivation and subsequent cell cycle progression likely requires an initial phosphorylation by cyclin D-CDK4/6 followed by cyclin E-CDK2 phosphorylation (6). Specificity of different CDK/cyclin complexes has been observed in vitro (6-8) and cyclin D1 is required for Ser780 phosphorylation in vivo (9).