20% off purchase of 3 or more products* | Learn More >>

Product listing: MEX3C (D5T2Z) Rabbit mAb, UniProt ID Q5U5Q3 #50844 to p300 (D2X6N) Rabbit mAb, UniProt ID Q09472 #54062

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: MEX3C is an RNA-binding E3 ubiquitin ligase implicated in a diverse set of biological functions.Along with PIGN and ZNF516, MEX3C has been identified as a suppressor of chromosome instability (CIN), which drives intratumor heterogeneity and has been associated with poor prognosis in colon cancer. Silencing of the Mex3c gene induces chromosome instability through replication stress/impaired replication fork progression (1).In mice, absence of the Mex3c gene causes growth retardation and reduced insulin-like growth factor 1 (IGF1) expression (2). Researchers have shown that murine MEX3C plays a role in controlling energy expenditure, physical activity and degree of adiposity (3,4). In the immune system, MEX3C is involved in post-transcriptional regulation of HLA-A2 (5), and plays a role in eliciting antiviral response (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Set1 histone methyltransferase protein was first identified in yeast as part of the Set1/COMPASS histone methyltransferase complex, which methylates histone H3 at Lys4 and functions as a transcriptional co-activator (1). While yeast contain only one known Set1 protein, mammals contain six Set1-related proteins: SET1A, SET1B, MLL1, MLL2, MLL3, and MLL4, all of which assemble into COMPASS-like complexes and methylate histone H3 at Lys4 (2,3). These Set1-related proteins are each found in distinct protein complexes, all of which share the common subunits WDR5, RBBP5, ASH2L, CXXC1 and DPY30, which are required for proper complex assembly and modulation of histone methyltransferase activity (2-6). MLL1 and MLL2 complexes contain the additional protein subunit, menin (6).MLL1 functions as a master regulator of both embryogenesis and hematopoiesis, and is required for proper expression of Hox genes (7,8). MLL1 is a large, approximately 4000 amino acid, protein that is cleaved by the taspase 1 threonine endopeptidase to form N-terminal (MLL1-N) and C-terminal MLL1 (MLL1-C) fragments, both of which are subunits of the functional MLL1/COMPASS complex (9,10). MLL1-N, MLL1-C, WDR5, RBBP5 and ASH2L define the core catalytic component of the MLL1/COMPASS complex, which is recruited to target genes and methylates histone H3 lysine 4 to regulate transcriptional initiation (11). At least 60 different MLL1 translocation partners have been molecularly characterized and associated with various hematological malignancies. The most common translocation partners include AF4, AF9, ENL, AF10, ELL and AF6 (8,12,13). With the exception of AF6, all of these partners are nuclear proteins that function to positively regulate transcriptional elongation. AF4, AF9 and ENL are all components of the super elongation complex (SEC), while AF4, AF9, AF10 and ENL all interact with the histone H3 lysine 79 methyltransferase DOT1L. Many MLL1 target genes are normally regulated by promoter-proximal pausing, with the release of RNA polymerase and transcriptional elongation occurring in response to proper stimuli (14). The association of MLL1 translocation partners with SEC and DOT1L suggest that MLL1-fusion proteins may function to sustain specific gene expression programs by constitutively activating transcriptional elongation.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The Set1 histone methyltransferase protein was first identified in yeast as part of the Set1/COMPASS histone methyltransferase complex, which methylates histone H3 at Lys4 and functions as a transcriptional co-activator (1). While yeast contain only one known Set1 protein, mammals contain six Set1-related proteins: SET1A, SET1B, MLL1, MLL2, MLL3, and MLL4, all of which assemble into COMPASS-like complexes and methylate histone H3 at Lys4 (2,3). These Set1-related proteins are each found in distinct protein complexes, all of which share the common subunits WDR5, RBBP5, ASH2L, CXXC1 and DPY30, which are required for proper complex assembly and modulation of histone methyltransferase activity (2-6). MLL1 and MLL2 complexes contain the additional protein subunit, menin (6).MLL1 functions as a master regulator of both embryogenesis and hematopoiesis, and is required for proper expression of Hox genes (7,8). MLL1 is a large, approximately 4000 amino acid, protein that is cleaved by the taspase 1 threonine endopeptidase to form N-terminal (MLL1-N) and C-terminal MLL1 (MLL1-C) fragments, both of which are subunits of the functional MLL1/COMPASS complex (9,10). MLL1-N, MLL1-C, WDR5, RBBP5 and ASH2L define the core catalytic component of the MLL1/COMPASS complex, which is recruited to target genes and methylates histone H3 lysine 4 to regulate transcriptional initiation (11). At least 60 different MLL1 translocation partners have been molecularly characterized and associated with various hematological malignancies. The most common translocation partners include AF4, AF9, ENL, AF10, ELL and AF6 (8,12,13). With the exception of AF6, all of these partners are nuclear proteins that function to positively regulate transcriptional elongation. AF4, AF9 and ENL are all components of the super elongation complex (SEC), while AF4, AF9, AF10 and ENL all interact with the histone H3 lysine 79 methyltransferase DOT1L. Many MLL1 target genes are normally regulated by promoter-proximal pausing, with the release of RNA polymerase and transcriptional elongation occurring in response to proper stimuli (14). The association of MLL1 translocation partners with SEC and DOT1L suggest that MLL1-fusion proteins may function to sustain specific gene expression programs by constitutively activating transcriptional elongation.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The Set1 histone methyltransferase protein was first identified in yeast as part of the Set1/COMPASS histone methyltransferase complex, which methylates histone H3 at Lys4 and functions as a transcriptional co-activator (1). While yeast contain only one known Set1 protein, mammals contain six Set1-related proteins: SET1A, SET1B, MLL1, MLL2, MLL3, and MLL4, all of which assemble into COMPASS-like complexes and methylate histone H3 at Lys4 (2,3). These Set1-related proteins are each found in distinct protein complexes, all of which share the common subunits WDR5, RBBP5, ASH2L, CXXC1, and DPY30, which are required for proper complex assembly and modulation of histone methyltransferase activity (2-6). MLL1 and MLL2 complexes contain the additional protein subunit, menin (6).MLL2, also known as histone-lysine N-methyltransferase 2B (KMT2B), functions to activate gene expression by mediating tri-methylation of histone H3 lysine 4 at the promoters of genes involved in embryogenesis and hematopoiesis, and is required for histone H3 lysine 4 tri-methylation at bivalent promoters in embryonic stem cells (7). Like MLL1, MLL2 is a large protein made up of approximately 2700 amino acids that is cleaved by the Taspase 1 threonine endopeptidase to form N-terminal (MLL2-N) and C-terminal (MLL2-C) fragments, both of which are subunits of the functional MLL2/COMPASS complex. MLL2-N, MLL2-C, WDR5, RBBP5, and ASH2L define the core catalytic component of the MLL2/COMPASS complex, which is recruited to target genes to regulate transcription. MLL1 gene translocations are often associated with various hematological malignancies and thought to be a driving component of these types of leukemia. MLL2 is required for memory formation, proper glucose homeostasis, and cardiac lineage differentiation of mouse embryonic stem cells (8-11). A recent study has shown that MLL2 is required for survival of MLL-AF9-transformed cells, implicating MLL2 as a potential modulator of MLL1-rearranged leukemias (12). Mutations in MLL2 cause complex early-onset dystonia, and overexpression of MLL2 is associated with gastrointestinal diffuse large B-cell lymphoma (13,14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The Set1 histone methyltransferase protein was first identified in yeast as part of the Set1/COMPASS histone methyltransferase complex, which methylates histone H3 at Lys4 and functions as a transcriptional co-activator (1). While yeast contain only one known Set1 protein, mammals contain six Set1-related proteins: SET1A, SET1B, MLL1, MLL2, MLL3, and MLL4, all of which assemble into COMPASS-like complexes and methylate histone H3 at Lys4 (2,3). These Set1-related proteins are each found in distinct protein complexes, all of which share the common subunits WDR5, RBBP5, ASH2L, CXXC1 and DPY30, which are required for proper complex assembly and modulation of histone methyltransferase activity (2-6). MLL1 and MLL2 complexes contain the additional protein subunit, menin (6).MLL3, also known as histone-lysine N-methyltransferase 2C (KMT2C), is a large 540 kDa protein that functions as part of the MLL3/COMPASS-like complex to activate gene expression by mediating mono-methylation of histone H3 lysine 4 at gene enhancers (7). Enhancer-specific H3 lysine 4 mono-methylation (H3K4me1) correlates with increased levels of chromatin interactions between gene enhancers and promoters, while loss of this modification results in a reduction of enhancer-promoter interactions (8). Furthermore, H3K4me1 facilitates recruitment of the Cohesin complex, which may function to promote the interactions between gene enhancers and promoters (8). MLL3 is found to be mutated or have altered expression in a number of different cancers (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Western Blotting

Background: The super elongation complex (SEC) plays a critical role in regulating RNA polymerase II (RNAPII) transcription elongation (1). The SEC is composed of AFF4, AFF1/AF4, MLLT3/AF9, and MLLT1/ENL proteins. The pathogenesis of mixed lineage leukemia is often associated with translocations of the SEC subunits joined to the histone H3 Lys4 methyltransferase mixed lineage leukemia (MLL) gene (1-4). The SEC has been found to contain RNAPII elongation factors eleven-nineteen lysine-rich leukemia (ELL), ELL2, and ELL3, along with the associated factors EAF1 and EAF2, which can increase the catalytic rate of RNAPII transcription in vitro, (1,2,5-7). The SEC positive transcription elongation factor b (P-TEFb) phosphorylates the carboxy-terminal domain within the largest subunit of RNAP II at Ser2 of the heptapeptide repeat. The SEC negative transcription elongation factors, DRB-induced stimulating factor (DSIF) and negative elongation factor (NELF), signal the transition from transcription initiation and pausing to productive transcription elongation (2,8-10). The chromosomal translocation of MLL with the members of the SEC leads to SEC recruitment to MLL regulated genes, such as the highly developmentally regulated Hox genes, implicating the misregulation and overexpression of these genes as underlying contributors to leukemogenesis (1,2,9,11).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Mono-Methyl-Histone H3 (Lys36) (D9J1D) Rabbit mAb #14111.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Mono-Methyl-Histone H3 (Lys4) (D1A9) XP® Rabbit mAb #5326.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$134
20 µl
$336
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Mortality factor 4-like protein 1 (MORF4L1/MRG15) is a chromo domain-containing protein that is part of several histone modifying complexes, including the Tip60 histone acetyltransferase (HAT) complex, histone deacetylase (HDAC) complexes, and the JARID1A and JARID1B histone demethylase complexes (1-6). MORF4L1/MRG15 recognizes di- or trimethylated Lys36 of histone H3 through its chromo domain. This interaction recruits and anchors MORF4L1/MRG15-associated chromatin modifying complexes to target genes for transcriptional regulation (7,8). MORF4L1/MRG15 plays a role in DNA repair as part of the Tip60 HAT complex (9,10). MORF4L1/MRG15 regulates alternative splicing during co-transcriptional splicing of mRNA as a part of the JARID1A complex (11). MORF4L1/MRG15 recruitment of the JARID1B complex to embryonic stem cell renewal-associated genes is important for repression of cryptic transcription and maintenance of proper transcriptional elongation (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Male-specific lethal 2-homolog (MSL2) is a component of the male-specific lethal (MSL) histone acetyltransferase complex, which contains MSL1, MSL2, MSL3, and MYST1. MYST1, also known as mammalian male absent on the first (MOF) and lysine acetyltransferase 8 (KAT8), is a member of the MYST (MOZ, YBF2, SAS2, and Tip60) family of histone acetyltransferases (1,2) and functions as the catalytic subunit of the MSL complex. The MSL complex is responsible for the majority of acetylation on histone H4 lysine 16 (3-5). In addition, as part of the MSL complex, MSL1 and MSL2 function as an E3 ubiquitin ligase to mono-ubiquitylate histone H2B on lysine 34 (6). The MSL complex plays a critical role in the regulation of transcription, DNA repair, autophagy, apoptosis, and embryonic stem cell pluripotency and differentiation (1,2,6,7). Loss of MSL activity leads to a global reduction in histone H4 lysine 16 acetylation, a common hallmark found in many human cancers. In particular, the reduction of MYST1 protein levels and histone H4 lysine 16 acetylation is associated with poor prognosis in breast, renal, colorectal, gastric, and ovarian cancers (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: MTA1 (metastasis associated gene 1) was identified in a differential screening of a cDNA library of metastatic and nonmetastatic adenocarcinoma cell lines (1), and was subsequently found to be an integral member of the nucleosome remodeling and deacetylation (NuRD) complex (2,3). MTA1 expression is upregulated under hypoxic conditions and found to enhance angiogenesis through stabilization of HIF-1α (4,5). MTA1 is overexpressed in a wide range of human cancers, and its expression is associated with malignancy and tumor progression (6). MTA1 is an essential downstream effector of c-Myc transformation (7). Recently, MTA1 was demonstrated to play a role in DNA damage response (8,9).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: MTA1 (metastasis associated gene 1) was identified in a differential screening of a cDNA library of metastatic and nonmetastatic adenocarcinoma cell lines (1), and was subsequently found to be an integral member of the nucleosome remodeling and deacetylation (NuRD) complex (2,3). MTA1 expression is upregulated under hypoxic conditions and found to enhance angiogenesis through stabilization of HIF-1α (4,5). MTA1 is overexpressed in a wide range of human cancers, and its expression is associated with malignancy and tumor progression (6). MTA1 is an essential downstream effector of c-Myc transformation (7). Recently, MTA1 was demonstrated to play a role in DNA damage response (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: MYST1, also known as mammalian male absent on the first (MOF) and lysine acetyltransferase 8 (KAT8), is a member of the MYST (MOZ, YBF2, SAS2 and Tip60) family of histone acetyltransferases (1,2). As the catalytic subunit of two different histone acetyltransferase complexes, MSL and NSL, MYST1 is responsible for the majority of histone H4 lysine 16 acetylation in the cell. MYST1 also acetylates p53 on lysine 120 and is important for activation of pro-apoptotic genes (1,2). As a component of the MSL complex, MYST1 associates with MSL1, MSL2L1, and MSL3L1, and specifically acetylates histone H4 on lysine 16 (3-5). As part of the NSL complex, MYST1 associates with the MLL1 histone methyltransferase complex containing MLL1/KMT2A, ASH2L, HCFC1, WDR5 and RBBP5, and shows broader acetyltransferase activity for histone H4 on lysines 5, 8, and 16 (3-5). MYST1 plays a critical role in the regulation of transcription, DNA repair, autophagy, apoptosis, and emybryonic stem cell pluripotency and differentiation (1,2,6). Loss of MYST1 leads to a global reduction in histone H4 lysine 16 acetylation, a common hallmark found in many human cancers. A reduction of MYST1 protein levels and histone H4 lysine 16 acetylation is associated with poor prognosis in breast, renal, colorectal, gastric, and ovarian cancers (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: MYST2, also known as HBO1 and lysine acetyltransferase 7 (KAT7), is a member of the MYST (MOZ, YBF2, SAS2 and Tip60) family of histone acetyltransferases (HATs). MYST2 is the catalytic subunit of the HBO1 acetyltransferase complex, which consists of MYST2, MYST/ESA1-asociated factor 6 (MEAF6), inhibitor of growth protein 4 (ING4) or inhibitor of growth protein 5 (ING5), and one of two families of scaffold proteins (JADE-1/2/3 or BRPF1/2/3) (1,2). The substrate specificity of the HBO1 complex is determined by the associated scaffold protein. HBO1 complexes containing JADE scaffold proteins acetylate histone H4 on lysines 5, 8 and 12, while complexes containing BRPF scaffold proteins acetylate histone H3 on lysines 14 and 23 (2). In addition the scaffold protein appears to regulate the function of the HBO1 complex. Complexes containing JADE scaffold proteins bind to origin recognition complex 1 (ORC1) and regulate licensing of DNA replication, while HBO1 complexes containing BRPF scaffold proteins regulate transcription (2-5). MYST2 is required for regulation of cell proliferation (1), adipogenesis (6), embryonic development (7) and survival of fetal liver erythroblasts (8). In addition, MYST2 is over-expressed in several human cancers, including cancers of the testis, ovary, breast, stomach, esophagus, and bladder (9). The MYST2 gene is amplified and protein is over-expressed in breast cancers, and over-expression of MYST2 increases anchorage-independent growth of several breast cancer cell lines (10).

$260
100 µl

Background: N6-methyladenosine (m6A) is a post-transcriptional modification found in various RNA subtypes. While the presence of m6A in RNA was described decades ago, the lack of tools has made interrogating the epitranscriptomic landscape challenging (1,2). With the emergence of new technologies such as miCLIP and NG-RNA-seq, researchers have been able to show that m6A is a biologically relevant mark in mRNA that is enriched in 3’ UTRs and stop codons (3,4). The m6A writer complex consists of a core heterodimer of methyltransferase-like protein 3 (METTL3) and methytransferase-like protein 14 (METTL14), and the additional regulatory proteins Virlizer/VIRMA and Wilms tumor 1-associated protein (WTAP) (5). METTL3 is the catalytic methyltransferase subunit and METTL14 is the target recognition subunit that binds to RNA (6). The Virilzer/VIRMA protein directs m6A methylation to the 3’ UTRs and stop codons, and WTAP targets the complex to nuclear speckles, which are sites of RNA processing (7). Less is known about readers and erasers of m6A, and while the fat mass and obesity-associated protein FTO was the first discovered m6A demethylase, subsequent studies demonstrated that this enzyme may prefer the closely related m6Am mark in vivo (8,9). ALKBH5 was later shown to be a bona fide m6A demethylase enzyme, contributing to the idea that the m6A modification is dynamically regulated (10). Readers of the m6A mark include the YTH protein family, which can bind to m6A and influence mRNA stability and translation efficiency (3,11-13). The m6A mark and machinery have been shown to regulate a variety of cellular functions, including RNA splicing, translational control, pluripotency and cell fate determination, neuronal function, and disease (1, 14-17). The m6A writer complex has been linked to various cancer types including AML and endometrial cancers (18,19). Additionally, m6A has been implicated in resistance to chemotherapy (20).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The most well characterized nuclear receptor corepressors are SMRT (silencing mediator for retinoic acid and thyroid hormone receptors) and its close paralog NCoR1 (nuclear receptor corepressor) (1,2). NCoR1 functions to transcriptionally silence various unliganded, DNA bound non-steroidal nuclear receptors by serving as a large molecular scaffold that bridges the receptors with multiple chromatin remodeling factors that repress nuclear receptor-mediated gene transcription, in part, through deacetylation of core histones surrounding target promoters. Indeed, the N-terminal portion of NCoR1 possesses multiple distinct transcriptional repression domains (RDs) reponsible for the recruitment of additional components of the corepressor complex such as HDACs, mSin3, GPS2, and TBL1/TBLR1. In between the RDs lies a pair of potent repressor motifs known as SANT motifs (SWI3, ADA2, N-CoR, and TFIIIB), which recruit HDAC3 and histones to the repressor complex in order to enhance HDAC3 activity (3). The C-terminal portion of NCoR1 contains multiple nuclear receptor interaction domains (NDs), each of which contains a conserved CoRNR box (or L/I-X-X-I/V-I) motif that allow for binding to various unliganded nuclear hormone receptors such as thyroid hormone (THR) and retinoic acid (RAR) receptors (4,5).Recent genetic studies in mice have not only corroborated the wealth of biochemical studies involving NCoR1 but have also provided significant insight regarding the function of NCoR1 in mammalian development and physiology. Although it has been observed that loss of Ncor1 does not affect early embyonic development, likely due to compensation by Smrt, embryonic lethality ultimately results during mid-gestation, largely due to defects in erythropoesis and thymopoesis (6). Another study demonstrated that the NDs of NCoR1 are critical for its ability to function in a physiological setting as a transcriptional repressor of hepatic THR and Liver X Receptor (LXR) (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Nucleolor protein 66 (NO66), also known as Myc-associated protein with a jumonji C (JmjC) domain (MAPJD), or ribosomal oxygenase 1, belongs to a large family of JmjC-domain-containing oxygenase proteins. NO66 exhibits both ribosomal histidine hydroxylase and histone demethylase activities, and plays a key role in regulation of gene transcription, RNA processing, and translation. NO66-mediated hydroxylation of ribosomal protein L8 (Rpl8) may play a role in regulation of protein synthesis (1). NO66 also functions to repress transcription by demethylating histone H3 lys4 and lys36, two histone marks that are important for transcriptional activation (2). The interaction of NO66 with the transcription factor osterix (OSX) regulates osteoblast differentiation and bone formation through repression of OSX target genes (3,4). In embryonic stem cells, the PHF19 protein recruits NO66 along with polycomb repressor complex 2 (PRC2) to differentiation-specific target genes to repress transcription through demethylation of histone H3 lys36 and methylation of histone H3 lys27, the latter mark being associated with transcriptional repression (2). NO66 is overexpressed in non-small cell lung cancer and colorectal cancer, and is associated with poor prognosis (5,6).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Nucleolin (D4C7O) Rabbit mAb #14574.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Nucleolin is a multi-functional protein that is one of the major components of the nucleoli (1). Nucleolin plays an essential role in various steps of ribosome biogenesis including rRNA synthesis, processing of pre-rRNA, pre-ribosomal RNA assembly, and transport of ribosomal proteins out of the nucleus (1-3). While the main function of nucleolin is ribosome biogenesis, it plays an important role in various other nuclear activities. Down regulation of nucleolin leads to increased expression of p53, defects in genome duplication, and a delay at prometaphase during mitosis leading to cell cycle arrest (4-6). In addition, nucleolin has been found in a complex with Rad51 and may participate in DNA repair by homologous recombination (7). Nucleolin binds to the catalytic subunit of the human telomerase reverse transcriptase, hTERT, and is thought to be involved in telomere maintenance (8). Nucleolin also possesses histone chaperone activity and is able to enhance the chromatin remodeling efficiency of SWItch/Sucrose Non Fermentable (SWI/SNF) and ATP-dependent chromatin-assembly factor (ACF), remove histone H2A-H2B dimers from nucleosomes, and facilitate the passage of RNA polymerase through chromatin (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Nucleolin is a multi-functional protein that is one of the major components of the nucleoli (1). Nucleolin plays an essential role in various steps of ribosome biogenesis including rRNA synthesis, processing of pre-rRNA, pre-ribosomal RNA assembly, and transport of ribosomal proteins out of the nucleus (1-3). While the main function of nucleolin is ribosome biogenesis, it plays an important role in various other nuclear activities. Down regulation of nucleolin leads to increased expression of p53, defects in genome duplication, and a delay at prometaphase during mitosis leading to cell cycle arrest (4-6). In addition, nucleolin has been found in a complex with Rad51 and may participate in DNA repair by homologous recombination (7). Nucleolin binds to the catalytic subunit of the human telomerase reverse transcriptase, hTERT, and is thought to be involved in telomere maintenance (8). Nucleolin also possesses histone chaperone activity and is able to enhance the chromatin remodeling efficiency of SWItch/Sucrose Non Fermentable (SWI/SNF) and ATP-dependent chromatin-assembly factor (ACF), remove histone H2A-H2B dimers from nucleosomes, and facilitate the passage of RNA polymerase through chromatin (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Nucleolin is a multi-functional protein that is one of the major components of the nucleoli (1). Nucleolin plays an essential role in various steps of ribosome biogenesis including rRNA synthesis, processing of pre-rRNA, pre-ribosomal RNA assembly, and transport of ribosomal proteins out of the nucleus (1-3). While the main function of nucleolin is ribosome biogenesis, it plays an important role in various other nuclear activities. Down regulation of nucleolin leads to increased expression of p53, defects in genome duplication, and a delay at prometaphase during mitosis leading to cell cycle arrest (4-6). In addition, nucleolin has been found in a complex with Rad51 and may participate in DNA repair by homologous recombination (7). Nucleolin binds to the catalytic subunit of the human telomerase reverse transcriptase, hTERT, and is thought to be involved in telomere maintenance (8). Nucleolin also possesses histone chaperone activity and is able to enhance the chromatin remodeling efficiency of SWItch/Sucrose Non Fermentable (SWI/SNF) and ATP-dependent chromatin-assembly factor (ACF), remove histone H2A-H2B dimers from nucleosomes, and facilitate the passage of RNA polymerase through chromatin (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Nuclear protein in testis (NUT) is normally confined to the germ cells of the testis and ovary (1,2). NUT midline carcinoma (NMC) is a recently recognized cancer that is defined by the presence of chromosomal rearrangements involving the NUT gene on chromosome 15q14 (3). In most cases the chromosomal translocation occurs between NUT and BRD4 on chromosome 19, resulting in the formation of a BRD4-NUT fusion protein. In the remaining tumors, variant NUT rearrangements are present involving BRD3, a very close homolog of BRD4. BRD4-NUT and BRD3-NUT encode fusion proteins that appear to contribute to carcinogenesis by blocking epithelial cell differentiation. NMCs, which are aggressive and highly lethal carcinomas, are morphologically indistinguishable from other poorly differentiated carcinomas. Given the limited expression of endogenous NUT protein, this antibody can be used to detect NUT fusion proteins in tissues by immunohistochemistry and immunofluorescence (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: LINE-1, also known as L1, is a non-long terminal repeat (non-LTR) retrotransposon with hundreds of thousands of copies in the human genome (1, 2). Like all non-LTRs, L1 replicates by target-primed reverse transcription (TPRT) (3). The L1 retrotransposon encodes two proteins critical to this process: ORF1p and ORF2p. ORF2p contributes to endonuclease and reverse transcriptase activity, while ORF1p acts as a nucleic acid chaperone that binds RNA (4-8). Many types of cancers have been shown to have L1 insertions within tumor suppressor genes, disrupting their expression and contributing to tumorigenesis (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: CBP (CREB-binding protein) and p300 are highly conserved and functionally related transcriptional co-activators that associate with transcriptional regulators and signaling molecules, integrating multiple signal transduction pathways with the transcriptional machinery (1,2). CBP/p300 also contain histone acetyltransferase (HAT) activity, allowing them to acetylate histones and other proteins (2). Phosphorylation of p300 at Ser89 by PKC represses its transciptional acitivity, and phosphorylation at the same site by AMPK disrupts the association of p300 with nuclear receptors (3,4). Ser1834 phosphorylation of p300 by Akt disrupts its association with C/EBPβ (5). Growth factors induce phosphorylation of CBP at Ser437, which is required for CBP recruitment to the transcription complex (6). CaM kinase IV phosphorylates CBP at Ser302, which is required for CBP-dependent transcriptional activation in the CNS (7). The role of acetylation of CBP/p300 is of particular interest (2,8). Acetylation of p300 at Lys1499 has been demonstrated to enhance its HAT activity and affect a wide variety of signaling events (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: CBP (CREB-binding protein) and p300 are highly conserved and functionally related transcriptional co-activators that associate with transcriptional regulators and signaling molecules, integrating multiple signal transduction pathways with the transcriptional machinery (1,2). CBP/p300 also contain histone acetyltransferase (HAT) activity, allowing them to acetylate histones and other proteins (2). Phosphorylation of p300 at Ser89 by PKC represses its transciptional acitivity, and phosphorylation at the same site by AMPK disrupts the association of p300 with nuclear receptors (3,4). Ser1834 phosphorylation of p300 by Akt disrupts its association with C/EBPβ (5). Growth factors induce phosphorylation of CBP at Ser437, which is required for CBP recruitment to the transcription complex (6). CaM kinase IV phosphorylates CBP at Ser302, which is required for CBP-dependent transcriptional activation in the CNS (7). The role of acetylation of CBP/p300 is of particular interest (2,8). Acetylation of p300 at Lys1499 has been demonstrated to enhance its HAT activity and affect a wide variety of signaling events (9).