Microsize antibodies for $99 | Learn More >>

Product listing: SMYD3 (D2Q4V) Rabbit mAb, UniProt ID Q9H7B4 #12859 to TET2 (D6C7K) Rabbit mAb (Mouse Specific), UniProt ID Q4JK59 #36449

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: SET and MYND domain containing protein 3 (SMYD3) is a member of the SET domain-containing family of protein methyltransferases and is localized to both the nucleus and cytoplasm (1-3). Several histone substrates have been identified for SMYD3; however, the data is controversial. In one study, SMYD3 has been shown to methylate histone H3 Lys4 (both di- and tri-methylation) and interact with RNA polymerase II to activate transcription (1). A second study has shown that SMYD3 preferentially methylates histone H4 Lys20 and interacts with nuclear receptor corepressor complex (NCOR) to repress transcription (2). A third study has shown that SMYD3 preferentially methylates histone H4 Lys5 (mono-, di-, and tri-methylation) (3). In addition, SMYD3 has been shown to methylate the endothelial growth factor receptor 1 (VEGFR1) on Lys831 and stimulate its kinase activity (4). Regardless of the preferred protein substrates, it is clear that SMYD3 functions as an oncogene. Research studies have shown SMYD3 is highly over-expressed in liver, breast, and rectal carcinomas. Over-expression of SMYD3 in multiple cell lines enhances proliferation, adhesion, and migration, while reduced expression results in significant suppression of cell growth (1,5-10). In addition, multiple cancer cell lines express both full length SMYD3 and a cleaved form of SMYD3 lacking the N-terminal 34 amino acids, and the cleaved form shows increased methyltransferase activity toward histone H3 (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Sucrose nonfermenting 2 homolog (SNF2H, SMARCA5) is one of two orthologs of the ISWI (imitation switch) ATPases encoded by the mammalian genome (1). SNF2H is part of the SNF2 family of chromatin remodeling factors that use ATP hydrolysis to catalyze biochemical reactions in several mammalian chromatin-remodeling complexes, including ACF1, RSF1, CHRAC, NoRC, WSTF, and WCRF180 (2). Research studies show that SNF2H is crucial for chromatin organization, DNA damage response, and differentiation (1-7). The SNF2H helicase facilitates DNA damage repair by actively moving nucleosomes for DNA damage response (DDR) proteins to effectively associate with damaged regions (3). Additional studies show that repair of double stranded breaks (DSBs) significantly decreases in the absence of SNF2H (3), and these cells become highly sensitive to DNA damage caused by x-rays and chemical treatments inducing DSBs (4,5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated SP1 (D4C3) Rabbit mAb #9389.
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry

Background: Specificity protein 1 (SP1) is a ubiquitously expressed transcription factor belonging to the family of C2H2-type zinc finger containing DNA-binding proteins. SP1 binds GC-rich motifs with high affinity and regulates the expression of numerous mammalian genes (1,2). It interacts with many other transcription factors, such as c-Myc, EGR1, and Stat1, and with basal transcription machinery components. SP1 interacts with chromatin-modifying factors, such as histone deacetylases (HDACs) and p300 in chromatin remodeling. Transcriptional activity and stability of SP1 are regulated by post-translational modification, including phosphorylation, acetylation, ubiquitination, and glycosylation (3). Glycosylation of SP1 following insulin treatment leads to increased nuclear localization, while glucagon treatment increases cytoplasmic SP1 levels (4-6). Investigators have found high levels of SP1 in patients with Alzheimer's disease (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Specificity protein 1 (SP1) is a ubiquitously expressed transcription factor belonging to the family of C2H2-type zinc finger containing DNA-binding proteins. SP1 binds GC-rich motifs with high affinity and regulates the expression of numerous mammalian genes (1,2). It interacts with many other transcription factors, such as c-Myc, EGR1, and Stat1, and with basal transcription machinery components. SP1 interacts with chromatin-modifying factors, such as histone deacetylases (HDACs) and p300 in chromatin remodeling. Transcriptional activity and stability of SP1 are regulated by post-translational modification, including phosphorylation, acetylation, ubiquitination, and glycosylation (3). Glycosylation of SP1 following insulin treatment leads to increased nuclear localization, while glucagon treatment increases cytoplasmic SP1 levels (4-6). Investigators have found high levels of SP1 in patients with Alzheimer's disease (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Western Blotting

Background: Suppressor of Ty-16 (SPT16) and structure-specific recognition protein-1 (SSRP1) are subunits of the facilitates chromatin transcription (FACT) complex that is essential for transcription elongation (1,2). FACT facilitates RNA polymerase-dependent transcription of chromatin templates by destabilizing the nucleosomes within the open reading frames of active genes (3-5). FACT destabilizes the nucleosomes, which would otherwise act as barriers to RNA polymerase transcription activity, by disrupting histone-histone and histone-DNA contacts that lead to the eviction of the histone H2A-H2B dimer (2,3,6). FACT may also function as a histone chaperone to reassemble nucleosomes after RNA polymerase passage (7). In addition to transcription, FACT activity has been shown to have a role in DNA replication in yeast and in DNA repair by contributing to the activation of p53 by CK2 and by facilitating histone H2AX-H2B exchange upon DNA damage (8-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: DRB-sensitivity inducing factor (DSIF), a heterodimer composed of SPT4 and SPT5, is capable of both facilitating and inhibiting RNA polymerase II (RNAPII) activity (1-3). DSIF, together with NELF (Negative Elongation Factor), inhibits RNAPII elongation, resulting in promoter proximal pausing of RNAPII as it awaits additional signaling to resume transcription (4). The release of promoter proximal pausing is signaled through phosphorylation of the RNAPII C-terminal domain (CTD) and NELF by positive transcription elongation factor (P-TEFb) (5). P-TEFb also phosphorylates SPT5 at Thr4 within the evolutionarily conserved heptapeptide repeat motif. This phosphorylation event switches DSIF from a transcriptional repressor to an activator where it becomes a critical factor for transcriptional elongation (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: SPT6 or SUPT6H is a histone H3 chaperone protein involved in transcriptional elongation and chromatin structure (1). The SPT6 protein contains a highly acidic N-terminus with leucine zipper and SH2 domains, which can interact with phospho-Rpb1 CTD (Ser2) to recruit SPN1 and other mRNA processing and export factors (2). SPT6 can enhance the elongation rate of RNA polymerase II, and can also maintain the modification state of histone H3 tails. (3-4). Loss of SPT6 causes improper initiation of transcription within coding regions (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: There are three members of the steroid receptor co-activator (SRC) family of proteins: SRC-1 (NCoA-1), SRC-2 (TIF2/GRIP1/NCoA-2), and SRC-3 (ACTR/pCIP/RAC3/TRAM-1/AIB1). All SRC family members share significant structural homology and function to stimulate transcription mediated by nuclear hormone receptors and other transcriptional activators such as Stat3, NF-κB, E2F1, and p53 (1-4). Two SRC proteins, SRC-1 and SRC-3, function as histone acetyltransferases (5,6). In addition, all three family members can recruit other histone acetyltransferases (CBP/p300, PCAF) and histone methyltransferases (PRMT1, CARM1) to target promoters and cooperate to enhance expression of many genes (5-8). The SRC proteins play important roles in multiple physiological processes including cell proliferation, cell survival, somatic cell growth, mammary gland development, female reproductive function, and vasoprotection (9). SRC-1 and SRC-3 are conduits for kinase-mediated growth factor signaling to the estrogen receptor and other transcriptional activators. Seven SRC-1 phosphorylation sites and six SRC-3 phosphorylation sites have been identified, which are induced by steroids, cytokines, and growth factors and involve multiple kinase signaling pathways (9-11). Research has shown that all three SRC family members are associated with increased activity of nuclear receptors in breast, prostate, and ovarian carcinomas. According to the literature, SRC-3 is frequently amplified or overexpressed in a number of cancers (12), and SRC-1/PAX3 and SRC-2/MYST3 translocations are found associated with rhabdomyosarcoma and acute myeloid leukemia, respectively (13,14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Western Blotting

Background: There are three members of the steroid receptor co-activator (SRC) family of proteins: SRC-1 (NCoA-1), SRC-2 (TIF2/GRIP1/NCoA-2), and SRC-3 (ACTR/pCIP/RAC3/TRAM-1/AIB1). All SRC family members share significant structural homology and function to stimulate transcription mediated by nuclear hormone receptors and other transcriptional activators such as Stat3, NF-κB, E2F1, and p53 (1-4). Two SRC proteins, SRC-1 and SRC-3, function as histone acetyltransferases (5,6). In addition, all three family members can recruit other histone acetyltransferases (CBP/p300, PCAF) and histone methyltransferases (PRMT1, CARM1) to target promoters and cooperate to enhance expression of many genes (5-8). The SRC proteins play important roles in multiple physiological processes including cell proliferation, cell survival, somatic cell growth, mammary gland development, female reproductive function, and vasoprotection (9). SRC-1 and SRC-3 are conduits for kinase-mediated growth factor signaling to the estrogen receptor and other transcriptional activators. Seven SRC-1 phosphorylation sites and six SRC-3 phosphorylation sites have been identified, which are induced by steroids, cytokines, and growth factors and involve multiple kinase signaling pathways (9-11). Research has shown that all three SRC family members are associated with increased activity of nuclear receptors in breast, prostate, and ovarian carcinomas. According to the literature, SRC-3 is frequently amplified or overexpressed in a number of cancers (12), and SRC-1/PAX3 and SRC-2/MYST3 translocations are found associated with rhabdomyosarcoma and acute myeloid leukemia, respectively (13,14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: There are three members of the steroid receptor co-activator (SRC) family of proteins: SRC-1 (NCoA-1), SRC-2 (TIF2/GRIP1/NCoA-2), and SRC-3 (ACTR/pCIP/RAC3/TRAM-1/AIB1). All SRC family members share significant structural homology and function to stimulate transcription mediated by nuclear hormone receptors and other transcriptional activators such as Stat3, NF-κB, E2F1, and p53 (1-4). Two SRC proteins, SRC-1 and SRC-3, function as histone acetyltransferases (5,6). In addition, all three family members can recruit other histone acetyltransferases (CBP/p300, PCAF) and histone methyltransferases (PRMT1, CARM1) to target promoters and cooperate to enhance expression of many genes (5-8). The SRC proteins play important roles in multiple physiological processes including cell proliferation, cell survival, somatic cell growth, mammary gland development, female reproductive function, and vasoprotection (9). SRC-1 and SRC-3 are conduits for kinase-mediated growth factor signaling to the estrogen receptor and other transcriptional activators. Seven SRC-1 phosphorylation sites and six SRC-3 phosphorylation sites have been identified, which are induced by steroids, cytokines, and growth factors and involve multiple kinase signaling pathways (9-11). Research has shown that all three SRC family members are associated with increased activity of nuclear receptors in breast, prostate, and ovarian carcinomas. According to the literature, SRC-3 is frequently amplified or overexpressed in a number of cancers (12), and SRC-1/PAX3 and SRC-2/MYST3 translocations are found associated with rhabdomyosarcoma and acute myeloid leukemia, respectively (13,14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: There are three members of the steroid receptor co-activator (SRC) family of proteins: SRC-1 (NCoA-1), SRC-2 (TIF2/GRIP1/NCoA-2), and SRC-3 (ACTR/pCIP/RAC3/TRAM-1/AIB1). All SRC family members share significant structural homology and function to stimulate transcription mediated by nuclear hormone receptors and other transcriptional activators such as Stat3, NF-κB, E2F1, and p53 (1-4). Two SRC proteins, SRC-1 and SRC-3, function as histone acetyltransferases (5,6). In addition, all three family members can recruit other histone acetyltransferases (CBP/p300, PCAF) and histone methyltransferases (PRMT1, CARM1) to target promoters and cooperate to enhance expression of many genes (5-8). The SRC proteins play important roles in multiple physiological processes including cell proliferation, cell survival, somatic cell growth, mammary gland development, female reproductive function, and vasoprotection (9). SRC-1 and SRC-3 are conduits for kinase-mediated growth factor signaling to the estrogen receptor and other transcriptional activators. Seven SRC-1 phosphorylation sites and six SRC-3 phosphorylation sites have been identified, which are induced by steroids, cytokines, and growth factors and involve multiple kinase signaling pathways (9-11). Research has shown that all three SRC family members are associated with increased activity of nuclear receptors in breast, prostate, and ovarian carcinomas. According to the literature, SRC-3 is frequently amplified or overexpressed in a number of cancers (12), and SRC-1/PAX3 and SRC-2/MYST3 translocations are found associated with rhabdomyosarcoma and acute myeloid leukemia, respectively (13,14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: There are three members of the steroid receptor co-activator (SRC) family of proteins: SRC-1 (NCoA-1), SRC-2 (TIF2/GRIP1/NCoA-2), and SRC-3 (ACTR/pCIP/RAC3/TRAM-1/AIB1). All SRC family members share significant structural homology and function to stimulate transcription mediated by nuclear hormone receptors and other transcriptional activators such as Stat3, NF-κB, E2F1, and p53 (1-4). Two SRC proteins, SRC-1 and SRC-3, function as histone acetyltransferases (5,6). In addition, all three family members can recruit other histone acetyltransferases (CBP/p300, PCAF) and histone methyltransferases (PRMT1, CARM1) to target promoters and cooperate to enhance expression of many genes (5-8). The SRC proteins play important roles in multiple physiological processes including cell proliferation, cell survival, somatic cell growth, mammary gland development, female reproductive function, and vasoprotection (9). SRC-1 and SRC-3 are conduits for kinase-mediated growth factor signaling to the estrogen receptor and other transcriptional activators. Seven SRC-1 phosphorylation sites and six SRC-3 phosphorylation sites have been identified, which are induced by steroids, cytokines, and growth factors and involve multiple kinase signaling pathways (9-11). Research has shown that all three SRC family members are associated with increased activity of nuclear receptors in breast, prostate, and ovarian carcinomas. According to the literature, SRC-3 is frequently amplified or overexpressed in a number of cancers (12), and SRC-1/PAX3 and SRC-2/MYST3 translocations are found associated with rhabdomyosarcoma and acute myeloid leukemia, respectively (13,14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: ATP-dependent chromatin remodeling complexes play an essential role in the regulation of nuclear processes such as transcription and DNA replication and repair (1,2). The SWI/SNF chromatin remodeling complex consists of more than 10 subunits and contains a single molecule of either BRM or BRG1 as the ATPase catalytic subunit. The activity of the ATPase subunit disrupts histone-DNA contacts and changes the accessibility of crucial regulatory elements to the chromatin. The additional core and accessory subunits play a scaffolding role to maintain stability and provide surfaces for interaction with various transcription factors and chromatin (2-5). The interactions between SWI/SNF subunits and transcription factors, such as nuclear receptors, p53, Rb, BRCA1, and MyoD, facilitate recruitment of the complex to target genes for regulation of gene activation, cell growth, cell cycle, and differentiation processes (1,6-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Western Blotting

Background: Suppressor of Ty-16 (SPT16) and structure-specific recognition protein-1 (SSRP1) are subunits of the facilitates chromatin transcription (FACT) complex that is essential for transcription elongation (1,2). FACT facilitates RNA polymerase-dependent transcription of chromatin templates by destabilizing the nucleosomes within the open reading frames of active genes (3-5). FACT destabilizes the nucleosomes, which would otherwise act as barriers to RNA polymerase transcription activity, by disrupting histone-histone and histone-DNA contacts that lead to the eviction of the histone H2A-H2B dimer (2,3,6). FACT may also function as a histone chaperone to reassemble nucleosomes after RNA polymerase passage (7). In addition to transcription, FACT activity has been shown to have a role in DNA replication in yeast and in DNA repair by contributing to the activation of p53 by CK2 and by facilitating histone H2AX-H2B exchange upon DNA damage (8-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: SSU72 is a protein phosphatase originally identified through its interaction with TFIIB as a factor required for transcription and RNA processing (1,2). While SSU72 has been known as a phosphatase of the RNA polymerase II carboxy-terminal domain at Ser5 of the heptapeptide repeat, additional studies suggest a role for SSU72 as a phosphatase for Ser7 of the heptapeptide repeat as well (3-9). The activities of SSU72 are thought to play a critical role in coupling transcription with pre-mRNA 3’ end processing (10-12). SSU72 is required for gene looping that connects the gene promoter with the terminator region, leading to proper initiation of transcription and enforcement of transcriptional directionality on promoters that may other wise act as bidirectional promoters (13-14). In addition to a role in transcription, SSU72 acts as a cohesin binding protein that regulates cohesion between sister chromatid arms during mitosis or meiosis (15).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Human histone methyltransferase SUV39H1 is the homolog of the dominant Drosophila PEV modifier Su(var)3-9 and is composed of 412 amino acid residues (1). It combines two of the most evolutionarily conserved domains of the "chromatin regulators": the chromo and SET domains (2,3). The 60 amino acid chromo domain represents an ancient histone-like fold that directs heterochromatic localizations. It has been demonstrated that the 130 amino acid SET domain contains the methyltransferase catalytic motif, which cooperates with the adjacent cysteine-rich regions to confer histone methyltransferase activity (1). This enzyme selectively methylates histone H3 on Lys9, which generates a binding site for HP1 proteins, a family of heterochromatic adaptor molecules involved in both gene silencing and supra-nucleosomal chromatin structure (4,5). SUV39H1 histone methyltransferase plays an important role in modification of histone amino termini and regulation of gene expression.

$348
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated SUZ12 (D39F6) XP® Rabbit mAb #3737.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The polycomb group (PcG) proteins contribute to the maintenance of cell identity, stem cell self-renewal, cell cycle regulation and oncogenesis by maintaining the silenced state of genes that promote cell lineage specification, cell death and cell-cycle arrest (1-4). PcG proteins exist in two complexes that cooperate to maintain long-term gene silencing through epigenetic chromatin modifications. The first complex, EED-EZH2, is recruited to genes by DNA-binding transcription factors and methylates histone H3 on Lys27. Methylation of Lys27 facilitates the recruitment of the second complex, PRC1, which ubiquitinylates histone H2A on Lys119 (5). Suppressor of Zeste 12 (SUZ12) is a component of the PRC2 complex, which together with Ezh2 and Eed is absolutely required for histone methyl-transferase activity (6). SUZ12 contains a C2H2 zinc finger domain similar to the zinc finger domains found in sequence-specific DNA binding proteins and may mediate the interaction between EZH2 and nucleosomes (6). SUZ12 is overexpressed in several human tumors, including tumors of the colon, breast and liver (7,8).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated SUZ12 (D39F6) XP® Rabbit mAb #3737.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: The polycomb group (PcG) proteins contribute to the maintenance of cell identity, stem cell self-renewal, cell cycle regulation and oncogenesis by maintaining the silenced state of genes that promote cell lineage specification, cell death and cell-cycle arrest (1-4). PcG proteins exist in two complexes that cooperate to maintain long-term gene silencing through epigenetic chromatin modifications. The first complex, EED-EZH2, is recruited to genes by DNA-binding transcription factors and methylates histone H3 on Lys27. Methylation of Lys27 facilitates the recruitment of the second complex, PRC1, which ubiquitinylates histone H2A on Lys119 (5). Suppressor of Zeste 12 (SUZ12) is a component of the PRC2 complex, which together with Ezh2 and Eed is absolutely required for histone methyl-transferase activity (6). SUZ12 contains a C2H2 zinc finger domain similar to the zinc finger domains found in sequence-specific DNA binding proteins and may mediate the interaction between EZH2 and nucleosomes (6). SUZ12 is overexpressed in several human tumors, including tumors of the colon, breast and liver (7,8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The polycomb group (PcG) proteins contribute to the maintenance of cell identity, stem cell self-renewal, cell cycle regulation and oncogenesis by maintaining the silenced state of genes that promote cell lineage specification, cell death and cell-cycle arrest (1-4). PcG proteins exist in two complexes that cooperate to maintain long-term gene silencing through epigenetic chromatin modifications. The first complex, EED-EZH2, is recruited to genes by DNA-binding transcription factors and methylates histone H3 on Lys27. Methylation of Lys27 facilitates the recruitment of the second complex, PRC1, which ubiquitinylates histone H2A on Lys119 (5). Suppressor of Zeste 12 (SUZ12) is a component of the PRC2 complex, which together with Ezh2 and Eed is absolutely required for histone methyl-transferase activity (6). SUZ12 contains a C2H2 zinc finger domain similar to the zinc finger domains found in sequence-specific DNA binding proteins and may mediate the interaction between EZH2 and nucleosomes (6). SUZ12 is overexpressed in several human tumors, including tumors of the colon, breast and liver (7,8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The nucleosome is the primary chromatin building block and consists of DNA wrapped around an octamer made of paired histone proteins H2A, H2B, H3, and H4. Chromatin remodeling plays a critical role in the regulation of various nuclear activities, including transcription. Histone proteins are targets of post-translational modification, including acetylation, phosphorylation, ubiquitination, and methylation. Modified histone residues are recognized and bound by chromatin modifiers and the transcription machinery to regulate gene expression (1-4). Protein arginine methyl transferases (PRMTs) methylate histone proteins at arginine residues to generate mono-methylated, symmetrically di-methylated, or asymmetrically di-methylated proteins. Asymmetrically di-methylated arginine residues are found on histone H3 (Arg2, 8, 17, 26 and 42), histone H4 (Arg3), and histone H2A (Arg3) proteins. Asymmetric methylation is carried out by type 1 PRMTs, which include PRMT1, PRMT2, PRMT4/CARM1, and PRMT6. These modifications are often associated with actively transcribed genes. Symmetric di-methylation of arginine residues are found on histone H3 (Arg2 and 8), Histones H4 (Arg3), and H2A (Arg3). Symmetrically di-methylated histone arginine residues are generated by type II transferases PRMT5 and PRMT7, and are often associated with transcription repression (5-9). Arginine residues can also be deiminated by a protein arginine deiminase (PADI) to form the non-coded amino acid citrulline. Conversion of arginine to citrulline prevents methylation of this residue and is thought to regulate histone arginine methylation levels (10-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: TATA-binding protein (TBP) is a ubiquitously expressed nuclear protein that functions at the core of the general transcription factor protein complex TFIID (1-3). TFIID, which contains TBP and 13 TBP-associated factors (TAFs), contributes to the formation of the transcription pre-initiation complex, an assembly of multiple protein complexes (TFIIA, TFIIB, TFIIE, TFIIF, TFIIH, and RNA polymerase II) that bind to a gene promoter during the initiation of transcription (1-3). Once the pre-initiation complex is formed, RNA polymerase II becomes competent for elongation and transcribes the body of a gene. TBP functions in the recruitment of TFIID by binding to the TATA-box sequence found approximately 25 base pairs upstream of the transcription start site of many protein-coding genes. In addition, many transcriptional activator proteins interact with TBP and various TAF proteins to facilitate recruitment of TFIID and formation of the pre-initiation complex.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: TBP binding protein associated factor 15 (TAF15) is a member of the multifunctional FET (FUS, EWS, and TAF15) family of proteins that bind both DNA and RNA and may be important for transcriptional regulation and RNA processing (1,2). Research studies show that FET family proteins, including TAF15, can be found as oncogenic fusion proteins with transcription factors in a variety of cancers. The fusion protein consists of the FET protein amino-terminal transcription activation domain and the transcription factor DNA binding domain, creating an aberrant transcription factor with potent transactivation potential (1-3). TAF15 can be part of a subset of the transcription factor IID (TFIID) complex, indicating that it may form a transcription pre-initiation complex at active genes, even if it is not considered a canonical TAF (4,5). Additional studies suggest roles for TAF15 in RNA splicing through its association with U1 small nuclear RNA and in regulation of cell cycle regulatory gene expression through a mechanism involving miRNA biosynthesis (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: Transducing β-like protein 1 (TBL1X/TBL1) and TBL1-related protein 1 (TBL1XR1/TBLR1) were originally identified as subunits of the co-repressor silencing mediator for retinoic and thyroid hormone receptor (SMRT) and nuclear receptor co-repressor (NCoR) complexes (1-3). These two factors are required for the exchange of co-repressor complexes for co-activators by acting as adaptors to recruit the ubiquitin/proteasome machinery that degrades the co-repressor proteins during ligand mediated activation of transcription (4,5). Co-factor exchange driven by TBL1X/TBL1 and TBL1XR1/TBLR1 appears to be the mechanism by which c-Jun and NF-κB mediated transcription is activated and is therefore likely to be the mechanism employed by other signal-dependent transcription factors as well (4,6). In addition, both TBL1X/TBL1 and TBL1XR1/TBLR1 have essential roles in regulating the Wnt-signaling pathway by recruiting β-catenin to Wnt target genes to activate transcription. Depletion of TBL1X-TBL1XR1 significantly inhibited Wnt-beta-catenin- induced gene expression and oncogenic growth in vitro and in vivo (7). Research studies have shown that upregulation of TBL1XR/TBLR1 is observed in a variety of solid tumors, and is correlated with advanced tumor stage, metastasis and poor prognosis (1).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated TBP (D5C9H) XP® Rabbit mAb #44059.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: TATA-binding protein (TBP) is a ubiquitously expressed nuclear protein that functions at the core of the general transcription factor protein complex TFIID (1-3). TFIID, which contains TBP and 13 TBP-associated factors (TAFs), contributes to the formation of the transcription pre-initiation complex, an assembly of multiple protein complexes (TFIIA, TFIIB, TFIIE, TFIIF, TFIIH, and RNA polymerase II) that bind to a gene promoter during the initiation of transcription (1-3). Once the pre-initiation complex is formed, RNA polymerase II becomes competent for elongation and transcribes the body of a gene. TBP functions in the recruitment of TFIID by binding to the TATA-box sequence found approximately 25 base pairs upstream of the transcription start site of many protein-coding genes. In addition, many transcriptional activator proteins interact with TBP and various TAF proteins to facilitate recruitment of TFIID and formation of the pre-initiation complex.

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: TATA-binding protein (TBP) is a ubiquitously expressed nuclear protein that functions at the core of the general transcription factor protein complex TFIID (1-3). TFIID, which contains TBP and 13 TBP-associated factors (TAFs), contributes to the formation of the transcription pre-initiation complex, an assembly of multiple protein complexes (TFIIA, TFIIB, TFIIE, TFIIF, TFIIH, and RNA polymerase II) that bind to a gene promoter during the initiation of transcription (1-3). Once the pre-initiation complex is formed, RNA polymerase II becomes competent for elongation and transcribes the body of a gene. TBP functions in the recruitment of TFIID by binding to the TATA-box sequence found approximately 25 base pairs upstream of the transcription start site of many protein-coding genes. In addition, many transcriptional activator proteins interact with TBP and various TAF proteins to facilitate recruitment of TFIID and formation of the pre-initiation complex.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: TATA-binding protein (TBP) is a ubiquitously expressed nuclear protein that functions at the core of the general transcription factor protein complex TFIID (1-3). TFIID, which contains TBP and 13 TBP-associated factors (TAFs), contributes to the formation of the transcription pre-initiation complex, an assembly of multiple protein complexes (TFIIA, TFIIB, TFIIE, TFIIF, TFIIH, and RNA polymerase II) that bind to a gene promoter during the initiation of transcription (1-3). Once the pre-initiation complex is formed, RNA polymerase II becomes competent for elongation and transcribes the body of a gene. TBP functions in the recruitment of TFIID by binding to the TATA-box sequence found approximately 25 base pairs upstream of the transcription start site of many protein-coding genes. In addition, many transcriptional activator proteins interact with TBP and various TAF proteins to facilitate recruitment of TFIID and formation of the pre-initiation complex.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Tudor domain-containing protein 3 (TDRD3) contains a tudor domain through which it binds to asymmetric di-methyl histone H3 (Arg17) and asymmetric di-methyl histone H4 (Arg3). Both of these histone marks are associated with transcription activation (1,2). TDRD3 is targeted to estrogen responsive genes where it performs as a coactivator (1). TDRD3 acts as a scaffolding protein to recruit Topoisomerase III B (TOP3B) to target genes to reduce transcription-generated R loops by relaxing negatively supercoiled DNA thereby reducing genomic instability (3). In addition to the nucleus, TDRD3 also resides in the cytoplasm where it associates with actively translating polyribosomes and accumulates into stress granules upon exposure to stress, implicating its role in post-transcriptional regulation of RNA (2,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: Methylation of DNA at cytosine residues is a heritable, epigenetic modification that is critical for proper regulation of gene expression, genomic imprinting, and mammalian development (1,2). 5-methylcytosine is a repressive epigenetic mark established de novo by two enzymes, DNMT3a and DNMT3b, and is maintained by DNMT1 (3, 4). 5-methylcytosine was originally thought to be passively depleted during DNA replication. However, subsequent studies have shown that Ten-Eleven Translocation (TET) proteins TET1, TET2, and TET3 can catalyze the oxidation of methylated cytosine to 5-hydroxymethylcytosine (5-hmC) (5). Additionally, TET proteins can further oxidize 5-hmC to form 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC), both of which are excised by thymine-DNA glycosylase (TDG), effectively linking cytosine oxidation to the base excision repair pathway and supporting active cytosine demethylation (6,7). TET2 is the most frequently mutated gene in myeloid dysplastic syndrome (MDS), a dysplasia of myeloid, megakaryocytic, and/or erythroid cell lineages, of which 30% progress to acute myeloid leukemia (AML) (8, 9). It is also mutated in diffuse large B-cell lymphoma (10). TET2 protein expression is often reduced in solid tumors such as prostate cancer, melanoma, and oral squamous cell carcinoma (11-13).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in mouse cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated TET2 (D6C7K) Rabbit mAb (Mouse Specific) #36449.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: Methylation of DNA at cytosine residues is a heritable, epigenetic modification that is critical for proper regulation of gene expression, genomic imprinting, and mammalian development (1,2). 5-methylcytosine is a repressive epigenetic mark established de novo by two enzymes, DNMT3a and DNMT3b, and is maintained by DNMT1 (3, 4). 5-methylcytosine was originally thought to be passively depleted during DNA replication. However, subsequent studies have shown that Ten-Eleven Translocation (TET) proteins TET1, TET2, and TET3 can catalyze the oxidation of methylated cytosine to 5-hydroxymethylcytosine (5-hmC) (5). Additionally, TET proteins can further oxidize 5-hmC to form 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC), both of which are excised by thymine-DNA glycosylase (TDG), effectively linking cytosine oxidation to the base excision repair pathway and supporting active cytosine demethylation (6,7). TET2 is the most frequently mutated gene in myeloid dysplastic syndrome (MDS), a dysplasia of myeloid, megakaryocytic, and/or erythroid cell lineages, of which 30% progress to acute myeloid leukemia (AML) (8, 9). It is also mutated in diffuse large B-cell lymphoma (10). TET2 protein expression is often reduced in solid tumors such as prostate cancer, melanoma, and oral squamous cell carcinoma (11-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Methylation of DNA at cytosine residues is a heritable, epigenetic modification that is critical for proper regulation of gene expression, genomic imprinting, and mammalian development (1,2). 5-methylcytosine is a repressive epigenetic mark established de novo by two enzymes, DNMT3a and DNMT3b, and is maintained by DNMT1 (3, 4). 5-methylcytosine was originally thought to be passively depleted during DNA replication. However, subsequent studies have shown that Ten-Eleven Translocation (TET) proteins TET1, TET2, and TET3 can catalyze the oxidation of methylated cytosine to 5-hydroxymethylcytosine (5-hmC) (5). Additionally, TET proteins can further oxidize 5-hmC to form 5-formylcytosine (5-fC) and 5-carboxylcytosine (5-caC), both of which are excised by thymine-DNA glycosylase (TDG), effectively linking cytosine oxidation to the base excision repair pathway and supporting active cytosine demethylation (6,7). TET2 is the most frequently mutated gene in myeloid dysplastic syndrome (MDS), a dysplasia of myeloid, megakaryocytic, and/or erythroid cell lineages, of which 30% progress to acute myeloid leukemia (AML) (8, 9). It is also mutated in diffuse large B-cell lymphoma (10). TET2 protein expression is often reduced in solid tumors such as prostate cancer, melanoma, and oral squamous cell carcinoma (11-13).