Microsize antibodies for $99 | Learn More >>

Product listing: CHD2 Antibody, UniProt ID O14647 #4170 to Histone H3 (K36M Mutant Specific) Antibody, UniProt ID P84243 #26218

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Chromodomain-helicase-DNA-binding domain (CHD) proteins have been identified in a variety of organisms (1,2). This family of proteins, which consists of nine members, has been divided into three separate subfamilies: subfamily I (CHD1 and CHD2), subfamily II (CHD3 and CHD4), and subfamily III (CHD5, CHD6, CHD7, CHD8, and CHD9). All of the CHD proteins contain two tandem N-terminal chromodomains, a SWI/SNF-related ATPase domain, and a C-terminal DNA binding domain (1,2). The chromodomains facilitate binding to methylated lysine residues of histone proteins and confer interactions with specific regions of chromatin. The SWI/SNF-related ATPase domain utilizes the energy from ATP hydrolysis to modify chromatin structure. CHD1 is a euchromatic protein that associates with the promoters of active genes, and is required for the maintenance of open chromatin and pluripotency in embryonic stem cells (3-6). The two chromodomains of CHD1 facilitate its recruitment to active genes by binding to methyl-lysine 4 of histone H3, a mark associated with transcriptional activation (4-6). Yeast CHD1 is a component of the SAGA and SLIK histone acetyltransferase complexes, and is believed to link histone methylation with histone acetylation during transcriptional activation (6). The CHD2 protein is not well characterized; however, mouse knockout studies suggest important functions in development and tumor suppression. Homozygous CHD2 knockout mice exhibit delayed growth and perinatal lethality (7). Heterozygous knockout mice show increased mortality and gross organ abnormalities, in addition to increased extramedullary hematopoiesis and susceptibility to lymphomas (7,8). CHD2 mutant cells are defective in hematopoietic stem cell differentiation and exhibit aberrant DNA damage responses (8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Chromodomain-helicase-DNA-binding domain (CHD) proteins have been identified in a variety of organisms (1,2). This family of nine proteins is divided into three separate subfamilies: subfamily I (CHD1 and CHD2), subfamily II (CHD3 and CHD4), and subfamily III (CHD5, CHD6, CHD7, CHD8, and CHD9). All CHD proteins contain two tandem amino-terminal chromodomains, a SWI/SNF-related ATPase domain, and a carboxy-terminal DNA-binding domain (1,2). The chromodomains facilitate binding to methylated lysine residues of histone proteins and confer interactions with specific regions of chromatin. The SWI/SNF-related ATPase domain utilizes energy from ATP hydrolysis to modify chromatin structure. CHD proteins are often found in large, multiprotein complexes with their transcriptional activation or repression activity governed by other proteins within the complex. CHD3 (also known as Mi2-α) and CHD4 (also known as Mi2-β) are central components of the nucleosome remodeling and histone deacetylase (NuRD) transcriptional repressor complex, which also contains HDAC1, HDAC2, RBAP48, RBAP46, MTA1, MTA2, MTA3, and MBD3 (3-8). Both CHD3 and CHD4 contain two plant homeodomain (PHD) zinc finger domains that bind directly to HDAC1 and HDAC2.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Chromodomain-helicase-DNA-binding domain (CHD) proteins have been identified in a variety of organisms (1,2). This family of nine proteins is divided into three separate subfamilies: subfamily I (CHD1 and CHD2), subfamily II (CHD3 and CHD4), and subfamily III (CHD5, CHD6, CHD7, CHD8, and CHD9). All CHD proteins contain two tandem amino-terminal chromodomains, a SWI/SNF-related ATPase domain, and a carboxy-terminal DNA-binding domain (1,2). The chromodomains facilitate binding to methylated lysine residues of histone proteins and confer interactions with specific regions of chromatin. The SWI/SNF-related ATPase domain utilizes energy from ATP hydrolysis to modify chromatin structure. CHD proteins are often found in large, multiprotein complexes with their transcriptional activation or repression activity governed by other proteins within the complex. CHD3 (also known as Mi2-α) and CHD4 (also known as Mi2-β) are central components of the nucleosome remodeling and histone deacetylase (NuRD) transcriptional repressor complex, which also contains HDAC1, HDAC2, RBAP48, RBAP46, MTA1, MTA2, MTA3, and MBD3 (3-8). Both CHD3 and CHD4 contain two plant homeodomain (PHD) zinc finger domains that bind directly to HDAC1 and HDAC2.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: CHD8 belongs to the chromodomain helicase DNA-binding (CHD) family of ATP-dependent chromatin remodeling proteins (1). The CHD family of proteins has been shown to play an important role in regulating gene expression by utilizing the energy derived from ATP hydrolysis to alter chromatin architecture (1,2). The nine CHD family members are characterized by the presence of two tandem chromodomains in the N-terminal region and an SNF2-like ATPase domain near the central region of the protein (2-4). In addition, CHD8 contains three CR (conserved region) domains, a SANT (switching-defective protein 3, adaptor 2, nuclear receptor co-repressor, transcription factor IIB)-like domain, two BRK (brahma and kismet) domains, and a DNA-binding domain (2). The chromatin remodeling activity of CHD8 has been shown to be important for the regulation of a wide variety of genes, such as the HOX genes (5) and genes that are driven by β-catenin (6), p53 (7), estrogen receptor (8), or androgen receptor (9). CHD8 can also interact with the insulator binding protein CTCF and is required for CTCF insulator activity at multiple gene loci (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: CCCTC-binding factor (CTCF) and its paralog, the Brother of the Regulator of Imprinted Sites (BORIS), are highly conserved transcription factors that regulate transcriptional activation and repression, insulator function, and imprinting control regions (ICRs) (1-4). Although they have divergent amino and carboxy termini, both proteins contain 11 conserved zinc finger domains that work in combination to bind the same DNA elements (1). CTCF is ubiquitously expressed and contributes to transcriptional regulation of cell-growth regulated genes, including c-myc, p19/ARF, p16/INK4A, BRCA1, p53, p27, E2F1, and TERT (1). CTCF also binds to and is required for the enhancer-blocking activity of all known insulator elements and ICRs, including the H19/IgF2, Prader-Willi/Angelman syndrome, and Inactive X-Specific Transcript (XIST) anti-sense loci (5-7). CTCF DNA-binding is sensitive to DNA methylation, a mark that determines selection of the imprinted allele (maternal vs. paternal) (1). The various functions of CTCF are regulated by at least two different post-translational modifications. Poly(ADP-ribosyl)ation of CTCF is required for insulator function (8). Phosphorylation of Ser612 by protein kinase CK2 facilitates a switch of CTCF from a transcriptional repressor to an activator at the c-myc promoter (9). CTCF mutations or deletions have been found in many breast, prostate, and Wilms tumors (10,11). Expression of BORIS is restricted to spermatocytes and is mutually exclusive of CTCF (3). In cells expressing BORIS, promoters of X-linked cancer-testis antigens like MAGE-1A are demethylated and activated, but methylated and inactive in CTCF-expressing somatic cells (12). Like other testis specific proteins, BORIS is abnormally expressed in different cancers, such as breast cancer, and has a greater affinity than CTCF for DNA binding sites, detracting from CTCF’s potential tumor suppressing activity (1,3,13,14).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: The CXXC finger protein 1 (CXXC1, CGBP, CFP1) is a key subunit of the human SET1 histone methyltransferase complex (1,2) that methylates histone H3 at Lys4 to create a mark of transcriptionally active promoters (3,4). CXXC1 is enriched at CpG islands where it selectively binds non-methylated CpG motifs to provide a link between global H3K4 methylation and CpG islands (5). Research studies have revealed a role for CXXC1 in the maintenance of cytosine methylation through direct interaction with DNMT1 (6-9). The epigenetic functions of CXXC1 are critical for normal embryonic development. Targeted deletion of the murine Cxxc1 gene results in early embryonic lethality while Cxxc1-null embryonic stem (ES) cells exhibit increased apoptosis and fail to undergo differentiation in vitro following withdrawal of leukemia inhibitory factor LIF (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Deleted in breast cancer gene 1 protein (DBC1) was originally identified by its localization to a region of chromosome 8p21 that is homozygously deleted in breast cancer (1). DBC1 is a large, nuclear protein with multiple functions in cell survival. It binds directly to the estrogen receptor α (ERα) hormone-binding domain in a ligand-independent manner and may be a key determinant of ligand-independent ERα expression and survival in human breast cancer cells (2). DBC1 can promote p53-mediated apoptosis by binding to and inhibiting the deacetylase activity of SirT1, resulting in increased p53 acetylation levels and activity (3). DBC1 may be an important regulator of heterochromatin formation as it binds SUV39H1 and inhibits its histone methyltransferase activity (4). Caspase-dependent processing activates the pro-apoptotic activity of DBC1 during Tumor Necrosis Factor-α (TNF-α)-mediated cell death signaling (5). This processing of DBC1 in response to TNF-α is an early event in the onset of apoptosis and results in relocalization of DBC1 to the cytoplasm. Overexpression of the processed, cytoplasmic form of DBC1 results in mitochondrial clustering and matrix condensation and sensitizes cells to TNF-α-mediated apoptosis.

$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1). Histone methylation is a major determinant for the formation of active and inactive regions of the genome and is crucial for the proper programming of the genome during development (2,3). Arginine methylation of histones H3 (Arg2, 17, 26) and H4 (Arg3) promotes transcriptional activation and is mediated by a family of protein arginine methyltransferases (PRMTs), including the co-activators PRMT1 and CARM1 (PRMT4) (4). In contrast, a more diverse set of histone lysine methyltransferases has been identified, all but one of which contain a conserved catalytic SET domain originally identified in the Drosophila Su(var)3-9, Enhancer of zeste, and Trithorax proteins. Lysine methylation occurs primarily on histones H3 (Lys4, 9, 27, 36, 79) and H4 (Lys20) and has been implicated in both transcriptional activation and silencing (4). Methylation of these lysine residues coordinates the recruitment of chromatin modifying enzymes containing methyl-lysine binding modules such as chromodomains (HP1, PRC1), PHD fingers (BPTF, ING2), tudor domains (53BP1), and WD-40 domains (WDR5) (5-8). The discovery of histone demethylases such as PADI4, LSD1, JMJD1, JMJD2, and JHDM1 has shown that methylation is a reversible epigenetic marker (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: DNA methyltransferase 1 (DNMT1)-associated protein 1 (DMAP1) is a nuclear protein that functions in transcriptional repression and DNA repair. DMAP1 was first identified as an activator of DNMT1 methyltransferase activity (1). Both DMAP1 and DNMT1 are targeted to replication foci during S phase and function to transfer proper methylation patterns to newly synthesized DNA during replication (1). In late S phase, DMAP1-DNMT1 co-operate with a p33ING1-Sin3-HDAC2 complex to maintain pericentric heterochromatin by deacetylating histones, methylating histone H3 at Lys9, and methylating DNA (1,2). The DMAP1 protein is also part of the TIP60-p400 complex, a histone acetyltransferases (HAT) and chromatin-remodeling complex that functions in DNA repair (3,4). Upon DNA damage, the TIP60-p400 complex acetylates histone H4 at Lys16 to induce chromatin relaxation and activation of the ATM kinase. DMAP1 is required for DNA-damage induced TIP60-p400-mediated histone acetylation, and deletion of DMAP1 impairs AMT function (5). DMAP1-DNMT1 may also methylate DNA at sites of DNA damage during homologous recombination, which results in gene silencing (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Methylation of DNA at cytosine residues in mammalian cells is a heritable, epigenetic modification that is critical for proper regulation of gene expression, genomic imprinting and development (1,2). Three families of mammalian DNA methyltransferases have been identified: DNMT1, DNMT2 and DNMT3 (1,2). DNMT1 is constitutively expressed in proliferating cells and functions as a maintenance methyltransferase, transferring proper methylation patterns to newly synthesized DNA during replication. DNMT3A and DNMT3B are strongly expressed in embryonic stem cells with reduced expression in adult somatic tissues. DNMT3A and DNMT3B function as de novo methyltransferases that methylate previously unmethylated regions of DNA. DNMT2 is expressed at low levels in adult somatic tissues and its inactivation affects neither de novo nor maintenance DNA methylation. DNMT1, DNMT3A and DNMT3B together form a protein complex that interacts with histone deacetylases (HDAC1, HDAC2, Sin3A), transcriptional repressor proteins (RB, TAZ-1) and heterochromatin proteins (HP1, SUV39H1), to maintain proper levels of DNA methylation and facilitate gene silencing (3-8). Improper DNA methylation contributes to diseased states such as cancer (1,2). Hypermethylation of promoter CpG islands within tumor suppressor genes correlates with gene silencing and the development of cancer. In addition, hypomethylation of bulk genomic DNA correlates with and may contribute to the onset of cancer. DNMT1, DNMT3A and DNMT3B are over-expressed in many cancers, including acute and chronic myelogenous leukemias, in addition to colon, breast and stomach carcinomas (9-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Down-regulator of transcription 1 (DR1), also known as negative cofactor 2-β (NC2-β), forms a heterodimer with DR1 associated protein 1 (DRAP1)/NC2-α and acts as a negative regulator of RNA polymerase II and III (RNAPII and III) transcription (1-5). DR1 activity is thought to be important for modulating the switch between basal transcription activity and transcription activator driven transcription (2,6,7). DR1 interaction with TATA binding protein (TBP) blocks the association of general transcription factors TFIIA and TFIIB with TBP and disrupts the formation of the RNAPII transcription initiation complex (1,8,9). RNAPIII driven transcription is also inhibited by DR1 interaction with TBP. DR1 disrupts the interaction of TBP with the TFIIB related factor (BRF)/RNAPIII B-related factor, inhibiting transcription initiation by the RNAPIII machinery (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The polycomb group (PcG) proteins contribute to the maintenance of cell identity, stem cell self-renewal, cell cycle regulation and oncogenesis by maintaining the silenced state of genes that promote cell lineage specification, cell death and cell-cycle arrest (1-4). PcG proteins exist in two complexes that cooperate to maintain long-term gene silencing through epigenetic chromatin modifications. The first complex, EED-EZH2, is recruited to genes by DNA-binding transcription factors and methylates histone H3 on Lys27. Methylation of Lys27 facilitates the recruitment of the second complex, PRC1, which ubiquitinylates histone H2A on Lys119 (5). Embryonic ectoderm development protein (EED) is a component of the PRC2 complex, which together with Ezh2 and SUZ12 is absolutely required for histone methyl-transferase activity (6). EED, SUZ12 and EZH2 are overexpressed in various types of cancer, including tumors of the colon, breast, prostate and ovary (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Elongator is a highly conserved transcription elongation factor complex that was first identified in yeast as part of the hyperphosphorylated RNA polymerase II (RNAPII) holoenzyme (1). The Elongator complex consists of 6 subunits, ELP1-6, and has been shown to have acetyltransferase activity (2). The acetylation targets of Elongator include histone H3, which is linked to the transcription elongation function of the complex, and α-tubulin, which is associated with regulation of migration and maturation of projection neurons (3-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The Ewing sarcoma (EWS) protein is a member of the multifunctional FET (FUS, EWS, and TAF15) family of proteins (1,2). These proteins are RNA and DNA binding proteins that are thought to be important for both transcriptional regulation and RNA processing. EWS can be found as part of a fusion protein with various E-twenty six (ETS) family transcription factors, most commonly Fli-1, in the Ewing sarcoma family of tumors (1-4). The amino terminus of the EWS protein, containing the transcriptional activation domain, is fused to the DNA binding domain of the ETS transcription factor, causing aberrant expression of target genes (1-5). EWS interacts with the transcription initiation complex via TFIID and RNA polymerase II subunits, as well as transcriptional regulators, such as Brn3A and CBP/p300, which suggests a role for EWS in transcriptional regulation (1,6-9). EWS also interacts with multiple components of the splicing machinery, implicating a role for EWS in RNA processing (1,10-12). EWS regulates the expression of cyclin D1, which controls G1-S phase transition during the cell cycle, at the level of transcriptional activation and mRNA splicing. The EWS-Fli-1 fusion protein has been shown to promote the expression of the cyclin D1b splice variant in Ewing sarcoma cells (13). In addition, EWS regulates the DNA damage-induced alternative splicing of genes involved in DNA repair and stress response and is required for cell viability upon DNA damage (14). Consistent with these results, EWS knockout mice display hypersensitivity to ionizing radiation and premature cellular senescence, suggesting a role for EWS in homologous recombination and maintenance of genomic stability (15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Pig, Rat

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: The polycomb group (PcG) proteins are involved in maintaining the silenced state of several developmentally regulated genes and contribute to the maintenance of cell identity, cell cycle regulation, and oncogenesis (1,2). Enhancer of zeste homolog 2 (Ezh2), a member of this large protein family, contains four conserved regions including domain I, domain II, and a cysteine-rich amino acid stretch that precedes the carboxy-terminal SET domain (3). The SET domain has been linked with histone methyltransferase (HMTase) activity. Moreover, mammalian Ezh2 is a member of a histone deacetylase complex that functions in gene silencing, acting at the level of chromatin structure (4). Ezh2 complexes methylate histone H3 at Lys9 and 27 in vitro, which is thought to be involved in targeting transcriptional regulators to specific loci (5). Ezh2 is deregulated in various tumor types, and its role, both as a primary effector and as a mediator of tumorigenesis, has become a subject of increased interest (6).

$260
100 µl
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Western Blotting

Background: CRISPR-Cas (clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins) are RNA-guided nuclease effectors that are utilized for precise genome editing in mammalian systems (1). Cpf1 (CRISPR from Prevotella and Francisella) are members of the Class 2 CRISPR system (2). Class 2 CRISPR systems, such as the well characterized Cas9, rely on single-component effector proteins to mediate DNA interference (3). Cpf1 endonucleases, compared to Cas9 systems, have several unique features that increase the utility of CRISPR-based genome editing techniques: 1) Cpf1-mediated cleavage relies on a single and short CRISPR RNA (crRNA) without the requirement of a trans-activating crRNA (tracrRNA), 2) Cpf1 utilizes T-Rich protospacer adjacent motif (PAM) sequences rather than a G-Rich PAM, and 3) Cpf1 generates a staggered, rather than a blunt-ended, DNA double-stranded break (2). These features broaden the utility of using CRISPR-Cas systems for specific gene regulation and therapeutic applications. Several Cpf1 bacterial orthologs have been characterized for CRISPR-mediated mammalian genome editing (2, 4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Host cell factor C1 (HCFC1) was first identified as the host cell factor for human herpes simplex virus infection. HCFC1 and the viral protein VP16 belong to a multi-protein complex that promotes transcription of viral immediate early genes (1). The relatively large HCFC1 protein contains 6 centrally located 26 amino acid repeats that can be O-GlcNAcylated and subjected to O-linked beta-N-acetylglucosamine transferase (OGT) cleavage (2-4). The resulting amino-terminal (HCFC1-N) and carboxy-terminal (HCFC1-C) fragments are non-covalently associated and play important roles in cell cycle regulation. The HCFC1-N peptide facilitates progression through the G1 phase of the cell cycle while HCFC1-C enables proper mitosis and cytokinesis during the M phase (5-7). As HCFC1 plays an important role in neurodevelopment, mutations in the corresponding gene are associated with neurodevelopmental disorders (e.g., intellectual disability) in humans (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Host cell factor C1 (HCFC1) was first identified as the host cell factor for human herpes simplex virus infection. HCFC1 and the viral protein VP16 belong to a multi-protein complex that promotes transcription of viral immediate early genes (1). The relatively large HCFC1 protein contains 6 centrally located 26 amino acid repeats that can be O-GlcNAcylated and subjected to O-linked beta-N-acetylglucosamine transferase (OGT) cleavage (2-4). The resulting amino-terminal (HCFC1-N) and carboxy-terminal (HCFC1-C) fragments are non-covalently associated and play important roles in cell cycle regulation. The HCFC1-N peptide facilitates progression through the G1 phase of the cell cycle while HCFC1-C enables proper mitosis and cytokinesis during the M phase (5-7). As HCFC1 plays an important role in neurodevelopment, mutations in the corresponding gene are associated with neurodevelopmental disorders (e.g., intellectual disability) in humans (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Acetylation of the histone tail causes chromatin to adopt an "open" conformation, allowing increased accessibility of transcription factors to DNA. The identification of histone acetyltransferases (HATs) and their large multiprotein complexes has yielded important insights into how these enzymes regulate transcription (1,2). HAT complexes interact with sequence-specific activator proteins to target specific genes. In addition to histones, HATs can acetylate nonhistone proteins, suggesting multiple roles for these enzymes (3). In contrast, histone deacetylation promotes a "closed" chromatin conformation and typically leads to repression of gene activity (4). Mammalian histone deacetylases can be divided into three classes on the basis of their similarity to various yeast deacetylases (5). Class I proteins (HDACs 1, 2, 3, and 8) are related to the yeast Rpd3-like proteins, those in class II (HDACs 4, 5, 6, 7, 9, and 10) are related to yeast Hda1-like proteins, and class III proteins are related to the yeast protein Sir2. Inhibitors of HDAC activity are now being explored as potential therapeutic cancer agents (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Acetylation of the histone tail causes chromatin to adopt an "open" conformation, allowing increased accessibility of transcription factors to DNA. The identification of histone acetyltransferases (HATs) and their large multiprotein complexes has yielded important insights into how these enzymes regulate transcription (1,2). HAT complexes interact with sequence-specific activator proteins to target specific genes. In addition to histones, HATs can acetylate nonhistone proteins, suggesting multiple roles for these enzymes (3). In contrast, histone deacetylation promotes a "closed" chromatin conformation and typically leads to repression of gene activity (4). Mammalian histone deacetylases can be divided into three classes on the basis of their similarity to various yeast deacetylases (5). Class I proteins (HDACs 1, 2, 3, and 8) are related to the yeast Rpd3-like proteins, those in class II (HDACs 4, 5, 6, 7, 9, and 10) are related to yeast Hda1-like proteins, and class III proteins are related to the yeast protein Sir2. Inhibitors of HDAC activity are now being explored as potential therapeutic cancer agents (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: HELLS, or LSH1, is a lymphoid-specific helicase thought to be involved in cellular proliferation and leukemogenesis (1,2). It is believed to be a chromatin remodeler and is required for DNMT1-mediated methylation maintenance and DNMT3A/DNMT3B-mediated de novo methylation. The role of HELLS in methylation maintenance was thought to be largely confined to repetitive DNA sequences, including major and minor satellite sequences, rather than single copy genes (3,4); recent evidence suggests a role in genome-wide cysteine methylation at non-repeat sequences (5). De novo methylation maintenance is associated with silencing of specific genes, some known to be involved in pluripotency and lineage commitment (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Acetylation of the histone tail causes chromatin to adopt an "open" conformation, allowing increased accessibility of transcription factors to DNA. The identification of histone acetyltransferases (HATs) and their large multiprotein complexes has yielded important insights into how these enzymes regulate transcription (1,2). HAT complexes interact with sequence-specific activator proteins to target specific genes. In addition to histones, HATs can acetylate nonhistone proteins, suggesting multiple roles for these enzymes (3). In contrast, histone deacetylation promotes a "closed" chromatin conformation and typically leads to repression of gene activity (4). Mammalian histone deacetylases can be divided into three classes on the basis of their similarity to various yeast deacetylases (5). Class I proteins (HDACs 1, 2, 3, and 8) are related to the yeast Rpd3-like proteins, those in class II (HDACs 4, 5, 6, 7, 9, and 10) are related to yeast Hda1-like proteins, and class III proteins are related to the yeast protein Sir2. Inhibitors of HDAC activity are now being explored as potential therapeutic cancer agents (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Acetylation of the histone tail causes chromatin to adopt an "open" conformation, allowing increased accessibility of transcription factors to DNA. The identification of histone acetyltransferases (HATs) and their large multiprotein complexes has yielded important insights into how these enzymes regulate transcription (1,2). HAT complexes interact with sequence-specific activator proteins to target specific genes. In addition to histones, HATs can acetylate nonhistone proteins, suggesting multiple roles for these enzymes (3). In contrast, histone deacetylation promotes a "closed" chromatin conformation and typically leads to repression of gene activity (4). Mammalian histone deacetylases can be divided into three classes on the basis of their similarity to various yeast deacetylases (5). Class I proteins (HDACs 1, 2, 3, and 8) are related to the yeast Rpd3-like proteins, those in class II (HDACs 4, 5, 6, 7, 9, and 10) are related to yeast Hda1-like proteins, and class III proteins are related to the yeast protein Sir2. Inhibitors of HDAC activity are now being explored as potential therapeutic cancer agents (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Acetylation of the histone tail causes chromatin to adopt an "open" conformation, allowing increased accessibility of transcription factors to DNA. The identification of histone acetyltransferases (HATs) and their large multiprotein complexes has yielded important insights into how these enzymes regulate transcription (1,2). HAT complexes interact with sequence-specific activator proteins to target specific genes. In addition to histones, HATs can acetylate nonhistone proteins, suggesting multiple roles for these enzymes (3). In contrast, histone deacetylation promotes a "closed" chromatin conformation and typically leads to repression of gene activity (4). Mammalian histone deacetylases can be divided into three classes on the basis of their similarity to various yeast deacetylases (5). Class I proteins (HDACs 1, 2, 3, and 8) are related to the yeast Rpd3-like proteins, those in class II (HDACs 4, 5, 6, 7, 9, and 10) are related to yeast Hda1-like proteins, and class III proteins are related to the yeast protein Sir2. Inhibitors of HDAC activity are now being explored as potential therapeutic cancer agents (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Histone H2A.X is a variant histone that represents approximately 10% of the total H2A histone proteins in normal human fibroblasts (1). H2A.X is required for checkpoint-mediated cell cycle arrest and DNA repair following double-stranded DNA breaks (1). DNA damage, caused by ionizing radiation, UV-light, or radiomimetic agents, results in rapid phosphorylation of H2A.X at Ser139 by PI3K-like kinases, including ATM, ATR, and DNA-PK (2,3). Within minutes following DNA damage, H2A.X is phosphorylated at Ser139 at sites of DNA damage (4). This very early event in the DNA-damage response is required for recruitment of a multitude of DNA-damage response proteins, including MDC1, NBS1, RAD50, MRE11, 53BP1, and BRCA1 (1). In addition to its role in DNA-damage repair, H2A.X is required for DNA fragmentation during apoptosis and is phosphorylated by various kinases in response to apoptotic signals. H2A.X is phosphorylated at Ser139 by DNA-PK in response to cell death receptor activation, c-Jun N-terminal Kinase (JNK1) in response to UV-A irradiation, and p38 MAPK in response to serum starvation (5-8). H2A.X is constitutively phosphorylated on Tyr142 in undamaged cells by WSTF (Williams-Beuren syndrome transcription factor) (9,10). Upon DNA damage, and concurrent with phosphorylation of Ser139, Tyr142 is dephosphorylated at sites of DNA damage by recruited EYA1 and EYA3 phosphatases (9). While phosphorylation at Ser139 facilitates the recruitment of DNA repair proteins and apoptotic proteins to sites of DNA damage, phosphorylation at Tyr142 appears to determine which set of proteins are recruited. Phosphorylation of H2A.X at Tyr142 inhibits the recruitment of DNA repair proteins and promotes binding of pro-apoptotic factors such as JNK1 (9). Mouse embryonic fibroblasts expressing only mutant H2A.X Y142F, which favors recruitment of DNA repair proteins over apoptotic proteins, show a reduced apoptotic response to ionizing radiation (9). Thus, it appears that the balance of H2A.X Tyr142 phosphorylation and dephosphorylation provides a switch mechanism to determine cell fate after DNA damage.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Modulation of chromatin structure plays a critical role in the regulation of transcription in eukaryotes. The nucleosome, made up of four core histone proteins (H2A, H2B, H3 and H4), is the primary building block of chromatin. In addition to the growing number of post-translational histone modifications regulating chromatin structure, cells can also exchange canonical histones with variant histones that can directly or indirectly modulate chromatin structure (1). There are five major variants of histone H2A: canonical H2A (most abundant), H2A.X, MacroH2A, H2ABbd and H2A.Z (2). Histone H2A.Z, the most conserved variant across species, functions as both a positive and negative regulator of transcription and is important for chromosome stability (2). Several homologous protein complexes, such as SWR-C (S. cerevisiae), TIP60 (D. melanogaster) and SRCAP (mammals), have been shown to catalyze the ATP-dependent exchange of H2A.Z for H2A in the nucleosome (3,4,5). This exchange of histone H2A variants changes histone-histone interactions in the nucleosome core and alters an acidic patch on the surface of the nucleosome, resulting in changes in nucleosome stability and binding of non-histone proteins such as HP1α (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. Originally thought to function as a static scaffold for DNA packaging, histones have now been shown to be dynamic proteins, undergoing multiple types of post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (1,2). The p300/CBP histone acetyltransferases acetylate multiple lysine residues in the amino terminal tail of histone H2B (Lys5, 12, 15, and 20) at gene promoters during transcriptional activation (1-3). Hyper-acetylation of the histone tails neutralizes the positive charge of these domains and is believed to weaken histone-DNA and nucleosome-nucleosome interactions, thereby destabilizing chromatin structure and increasing the access of DNA to various DNA-binding proteins (4,5). In addition, acetylation of specific lysine residues creates docking sites that facilitate recruitment of many transcription and chromatin regulatory proteins that contain a bromodomain, which binds to acetylated lysine residues (6). Histone H2B is mono-ubiquitinated at Lys120 during transcriptional activation by the RAD6 E2 protein in conjunction with the BRE1A/BRE1B E3 ligase (also known as RNF20/RNF40) (7). Mono-ubiquitinated histone H2B Lys120 is associated with the transcribed region of active genes and stimulates transcriptional elongation by facilitating FACT-dependent chromatin remodeling (7-9). In addition, it is essential for subsequent methylation of histone H3 Lys4 and Lys79, two additional histone modifications that regulate transcriptional initiation and elongation (10). In response to metabolic stress, AMPK is recruited to responsive genes and phosphorylates histone H2B at Lys36, both at promoters and in transcribed regions of genes, and may regulate transcriptional elongation (11). In response to multiple apoptotic stimuli, histone H2B is phosphorylated at Ser14 by the Mst1 kinase (12). Upon induction of apoptosis, Mst1 is cleaved and activated by caspase-3, leading to global phosphorylation of histone H2B during chromatin condensation. Interestingly, histone H2B is rapidly phosphorylated at irradiation-induced DNA damage foci in mouse embryonic fibroblasts (13). In this case, phosphorylation at Ser14 is rapid, depends on prior phosphorylation of H2AX Ser139, and occurs in the absence of apoptosis, suggesting that Ser14 phosphorylation may have distinct roles in DNA-damage repair and apoptosis.

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Chondroblastoma is a rare type of benign tumor that is found at the rounded ends of the long bones in the arms and legs. More than 90% of chondroblastomas have been found to contain a heterozygous mutation in the H3F3A gene encoding the histone variant H3.3 (1). This mutation, a lysine to methionine amino acid substitution in codon 36 (K36M), inhibits at least two histone H3 lysine 36 methyltransferases, WHSC1 (MMSET) and SETD2, resulting in the reduction of global levels of histone H3 lysine 36 methylation (1). Chondrocytes containing the histone H3 K36M mutation exhibit several hallmarks of cancer cells, including increased ability to form colonies, resistance to apoptosis, and defects in differentiation. Reduction of global methylation levels in chondrocytes, resulting from the K36M mutation, contributes to tumorigenesis by altering the expression of cancer-associated genes. The histone H3 K36M mutation is also found to promote sarcomagenesis by impairing the differentiation of mesenchymal progenitor cells, resulting in undifferentiated sarcomas (2). The K36M mutation alters the histone methylation landscape, resulting in a genome-wide gain in histone H3 lysine 27 methylation and redistribution of polycomb respressive complex 1 and derepression of its target genes known to block mesenchymal differentiation. Finally, the histone H3 K36M mutation is also found in 13% of HPV-negative head and neck squamous cell carinomas, again contributing to tumorigenesis by altering global methylation levels of histone H3 lysine 36 (3).