Microsize antibodies for $99 | Learn More >>

Product listing: MIST1/bHLHa15 (D7N4B) XP® Rabbit mAb, UniProt ID Q7RTS1 #14896 to Non-phospho (Active) β-Catenin (Ser45) (D2U8Y) XP® Rabbit mAb, UniProt ID P35222 #19807

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Class A basic helix-loop-helix protein 15 (MIST1, bHLHa15) is a highly conserved basic helix loop helix family transcription factor that binds E-box motifs and regulates the expression of developmentally regulated genes (1). MIST1 can bind DNA as a homodimer, or may heterodimerize with other bHLH proteins to regulate target gene expression (1). MIST1 is expressed in an array of tissues, including salivary glands, stomach, small intestine, and the pancreas, but is generally restricted to secretory cell subtypes (2). In the pancreas, MIST1 is essential for the maturation, maintenance, and function of acinar cells (3). In gastric chief cells, MIST1 regulates the expression of RAB26 and RAB3D, two GTPases that function to regulate secretory granule formation (4). Loss of MIST1 in gastric chief cells may be a potential marker of gastric epithelial neoplasia (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Chromatin IP, Chromatin IP-seq, Western Blotting

Background: Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor that is most widely known for its roles in melanocyte, ophthalmic, and osteoclast development (1-3). In humans, MITF can function as a melanoma oncogene (4) and mutations in the corresponding MITF gene are associated with Waardenburg syndrome type 2, an auditory-pigmentary syndrome characterized by developmental defects in cells derived from neural crest (5). At least 12 isoforms of MITF have been identified, which exhibit differential patterns of expression among cell and tissue types (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Western Blotting

Background: Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor that is most widely known for its roles in melanocyte, ophthalmic, and osteoclast development (1-3). In humans, MITF can function as a melanoma oncogene (4) and mutations in the corresponding MITF gene are associated with Waardenburg syndrome type 2, an auditory-pigmentary syndrome characterized by developmental defects in cells derived from neural crest (5). At least 12 isoforms of MITF have been identified, which exhibit differential patterns of expression among cell and tissue types (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: MOB1 was first identified in yeast as a protein that binds to Mps with essential roles in the completion of mitosis and the maintenance of ploidy (1). Its Drosophila and mammalian homologs, Mats and MOB1, respectively, are involved in the Hippo signaling tumor suppressor pathway, which plays a critical role in organ size regulation and which has been implicated in cancer development (2-5). There are two MOB1 proteins in humans, MOB1α and MOB1β, that are encoded by two different genes but which have greater than 95% amino acid sequence identity (6). Both forms bind to members of the nuclear Dbf2-related (NDR) kinases, such as LATS1/2 and NDR1/2, thereby stimulating kinase activity (7-9). This binding is promoted by the phosphorylation of MOB1 at several threonine residues by MST1 and/or MST2 (5,10).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Myoblast determination protein 1 (MyoD1), also called myogenic factor 3 (Myf3), is a member of the MyoD family of muscle specific bHLH transcription factors (1). This family is responsible for controlling specification of the muscle cell lineage and members are expressed only in skeletal muscle and its precursors. MyoD1 is considered a master regulator of skeletal myogenesis as its expression can induce myogenic differentiation in myoblasts, fibroblasts, and a variety of other cell types (2,3). Through ChIP-sequencing experiments, researchers have discovered that MyoD is associated with the promoters of many genes in muscle cells, but it only regulates a subset of those genes. These research studies point to regulation of MyoD transcriptional activity via epigenetic mechanisms involving SWI/SNF complexes and Polycomb and Trithorax Group proteins (4-6). Additional influences on muscle development include signal transduction through MAPK, PI3K/Akt, myostatin, NF-κB, and mTOR signaling pathways (5-7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Naked1 (Nkd1) and Naked2 (Nkd2) are homologs of Drosophila Naked cuticle, a negative regulator of Wnt/Wingless signaling pathway which functions through a feedback mechanism (1,2). Both Drosophila and vertebrate Naked proteins contain a putative calcium-binding EF-hand motif, however, Drosophila Naked binds to zinc instead of calcium (3). Naked inhibits the canonical Wnt/β-catenin pathway by binding to Dishevelled proteins and directs Dishevelled activity towards the planar cell polarity pathway (2,4). Naked1 is a direct target of Wnt signaling and is overexpressed in some colon tumors due to constitutive activation of Wnt/β-catenin pathway (5). Naked2 is myristoylated and is required for sorting of TGF-α to the basolateral plasma membrane of polarized epithelial cells (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Naked1 (Nkd1) and Naked2 (Nkd2) are homologs of Drosophila Naked cuticle, a negative regulator of Wnt/Wingless signaling pathway which functions through a feedback mechanism (1,2). Both Drosophila and vertebrate Naked proteins contain a putative calcium-binding EF-hand motif, however, Drosophila Naked binds to zinc instead of calcium (3). Naked inhibits the canonical Wnt/β-catenin pathway by binding to Dishevelled proteins and directs Dishevelled activity towards the planar cell polarity pathway (2,4). Naked1 is a direct target of Wnt signaling and is overexpressed in some colon tumors due to constitutive activation of Wnt/β-catenin pathway (5). Naked2 is myristoylated and is required for sorting of TGF-α to the basolateral plasma membrane of polarized epithelial cells (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Naked1 (Nkd1) and Naked2 (Nkd2) are homologs of Drosophila Naked cuticle, a negative regulator of Wnt/Wingless signaling pathway which functions through a feedback mechanism (1,2). Both Drosophila and vertebrate Naked proteins contain a putative calcium-binding EF-hand motif, however, Drosophila Naked binds to zinc instead of calcium (3). Naked inhibits the canonical Wnt/β-catenin pathway by binding to Dishevelled proteins and directs Dishevelled activity towards the planar cell polarity pathway (2,4). Naked1 is a direct target of Wnt signaling and is overexpressed in some colon tumors due to constitutive activation of Wnt/β-catenin pathway (5). Naked2 is myristoylated and is required for sorting of TGF-α to the basolateral plasma membrane of polarized epithelial cells (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Nanog is a homeodomain-containing transcription factor that is essential for the maintenance of pluripotency and self renewal in embryonic stem cells (1). Nanog expression is controlled by a network of factors including Sox2 and the key pluripotency regulator Oct-4 (1). Recent advances in somatic cell reprogramming have utilized viral expression of combinations of transcription factors including nanog, Oct-4, Sox2, KLF4, c-Myc, and LIN28 (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation

Background: Nanog is a homeodomain-containing transcription factor that is essential for the maintenance of pluripotency and self renewal in embryonic stem cells (1). Nanog expression is controlled by a network of factors including Sox2 and the key pluripotency regulator Oct-4 (1). Recent advances in somatic cell reprogramming have utilized viral expression of combinations of transcription factors including nanog, Oct-4, Sox2, KLF4, c-Myc, and LIN28 (2,3).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in mouse cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Nanog (D2A3) XP® Rabbit mAb (Mouse Specific) #8822.
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Flow Cytometry

Background: Nanog is a homeodomain-containing transcription factor that is essential for the maintenance of pluripotency and self renewal in embryonic stem cells (1). Nanog expression is controlled by a network of factors including Sox2 and the key pluripotency regulator Oct-4 (1). Recent advances in somatic cell reprogramming have utilized viral expression of combinations of transcription factors including nanog, Oct-4, Sox2, KLF4, c-Myc, and LIN28 (2,3).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Nanog is a homeodomain-containing transcription factor that is essential for the maintenance of pluripotency and self renewal in embryonic stem cells (1). Nanog expression is controlled by a network of factors including Sox2 and the key pluripotency regulator Oct-4 (1). Recent advances in somatic cell reprogramming have utilized viral expression of combinations of transcription factors including nanog, Oct-4, Sox2, KLF4, c-Myc, and LIN28 (2,3).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 594 fluorescent dye and tested in-house for direct immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Nanog (D73G4) XP® Rabbit mAb #4903.
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Nanog is a homeodomain-containing transcription factor that is essential for the maintenance of pluripotency and self renewal in embryonic stem cells (1). Nanog expression is controlled by a network of factors including Sox2 and the key pluripotency regulator Oct-4 (1). Recent advances in somatic cell reprogramming have utilized viral expression of combinations of transcription factors including nanog, Oct-4, Sox2, KLF4, c-Myc, and LIN28 (2,3).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Nanog (D73G4) XP® Rabbit mAb #4903.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Nanog is a homeodomain-containing transcription factor that is essential for the maintenance of pluripotency and self renewal in embryonic stem cells (1). Nanog expression is controlled by a network of factors including Sox2 and the key pluripotency regulator Oct-4 (1). Recent advances in somatic cell reprogramming have utilized viral expression of combinations of transcription factors including nanog, Oct-4, Sox2, KLF4, c-Myc, and LIN28 (2,3).

$293
100 µl
REACTIVITY
Human

Background: Nanog is a homeodomain-containing transcription factor that is essential for the maintenance of pluripotency and self renewal in embryonic stem cells (1). Nanog expression is controlled by a network of factors including Sox2 and the key pluripotency regulator Oct-4 (1). Recent advances in somatic cell reprogramming have utilized viral expression of combinations of transcription factors including nanog, Oct-4, Sox2, KLF4, c-Myc, and LIN28 (2,3).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Nanog (D73G4) XP® Rabbit mAb #4903.
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry

Background: Nanog is a homeodomain-containing transcription factor that is essential for the maintenance of pluripotency and self renewal in embryonic stem cells (1). Nanog expression is controlled by a network of factors including Sox2 and the key pluripotency regulator Oct-4 (1). Recent advances in somatic cell reprogramming have utilized viral expression of combinations of transcription factors including nanog, Oct-4, Sox2, KLF4, c-Myc, and LIN28 (2,3).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Nanog is a homeodomain-containing transcription factor that is essential for the maintenance of pluripotency and self renewal in embryonic stem cells (1). Nanog expression is controlled by a network of factors including Sox2 and the key pluripotency regulator Oct-4 (1). Recent advances in somatic cell reprogramming have utilized viral expression of combinations of transcription factors including nanog, Oct-4, Sox2, KLF4, c-Myc, and LIN28 (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: N-myc downstream-regulated gene 1 (NDRG1), also termed Cap43, Drg1, RTP/rit42, and Proxy-1, is a member of the NDRG family, which is composed of four members (NDRG1-4) that function in growth, differentiation, and cell survival (1-5). NDRG1 is ubiquitously expressed and highly responsive to a variety of stress signals including DNA damage (4), hypoxia (5), and elevated levels of nickel and calcium (2). Expression of NDRG1 is elevated in N-myc defective mice and is negatively regulated by N- and c-myc (1,6). During DNA damage, NDRG1 is induced in a p53-dependent fashion and is necessary for p53-mediated apoptosis (4,7). Research studies have shown that NDRG1 may also play a role in cancer progression by promoting differentiation, inhibiting growth, and modulating metastasis and angiogenesis (3,4,6,8,9). Nonsense mutation of the NDRG1 gene has been shown to cause hereditary motor and sensory neuropathy-Lom (HMSNL), which is supported by studies demonstrating the role of NDRG1 in maintaining myelin sheaths and axonal survival (10,11). NDRG1 is up-regulated during mast cell maturation and its deletion leads to attenuated allergic responses (12). Both NDRG1 and NDRG2 are substrates of SGK1, although the precise physiological role of SGK1-mediated phosphorylation is not known (13). NDRG1 is phosphorylated by SGK1 at Thr328, Ser330, Thr346, Thr356, and Thr366. Phosphorylation by SGK1 primes NDRG1 for phosphorylation by GSK-3.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: N-myc downstream-regulated gene 1 (NDRG1), also termed Cap43, Drg1, RTP/rit42, and Proxy-1, is a member of the NDRG family, which is composed of four members (NDRG1-4) that function in growth, differentiation, and cell survival (1-5). NDRG1 is ubiquitously expressed and highly responsive to a variety of stress signals including DNA damage (4), hypoxia (5), and elevated levels of nickel and calcium (2). Expression of NDRG1 is elevated in N-myc defective mice and is negatively regulated by N- and c-myc (1,6). During DNA damage, NDRG1 is induced in a p53-dependent fashion and is necessary for p53-mediated apoptosis (4,7). Research studies have shown that NDRG1 may also play a role in cancer progression by promoting differentiation, inhibiting growth, and modulating metastasis and angiogenesis (3,4,6,8,9). Nonsense mutation of the NDRG1 gene has been shown to cause hereditary motor and sensory neuropathy-Lom (HMSNL), which is supported by studies demonstrating the role of NDRG1 in maintaining myelin sheaths and axonal survival (10,11). NDRG1 is up-regulated during mast cell maturation and its deletion leads to attenuated allergic responses (12). Both NDRG1 and NDRG2 are substrates of SGK1, although the precise physiological role of SGK1-mediated phosphorylation is not known (13). NDRG1 is phosphorylated by SGK1 at Thr328, Ser330, Thr346, Thr356, and Thr366. Phosphorylation by SGK1 primes NDRG1 for phosphorylation by GSK-3.

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: N-myc downstream-regulated gene 1 (NDRG1), also termed Cap43, Drg1, RTP/rit42, and Proxy-1, is a member of the NDRG family, which is composed of four members (NDRG1-4) that function in growth, differentiation, and cell survival (1-5). NDRG1 is ubiquitously expressed and highly responsive to a variety of stress signals including DNA damage (4), hypoxia (5), and elevated levels of nickel and calcium (2). Expression of NDRG1 is elevated in N-myc defective mice and is negatively regulated by N- and c-myc (1,6). During DNA damage, NDRG1 is induced in a p53-dependent fashion and is necessary for p53-mediated apoptosis (4,7). Research studies have shown that NDRG1 may also play a role in cancer progression by promoting differentiation, inhibiting growth, and modulating metastasis and angiogenesis (3,4,6,8,9). Nonsense mutation of the NDRG1 gene has been shown to cause hereditary motor and sensory neuropathy-Lom (HMSNL), which is supported by studies demonstrating the role of NDRG1 in maintaining myelin sheaths and axonal survival (10,11). NDRG1 is up-regulated during mast cell maturation and its deletion leads to attenuated allergic responses (12). Both NDRG1 and NDRG2 are substrates of SGK1, although the precise physiological role of SGK1-mediated phosphorylation is not known (13). NDRG1 is phosphorylated by SGK1 at Thr328, Ser330, Thr346, Thr356, and Thr366. Phosphorylation by SGK1 primes NDRG1 for phosphorylation by GSK-3.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The NDRG (N-Myc downstream-regulated gene) family consisting of NDRG1, NDRG2, NDRG3, and NDRG4 are structurally related proteins with roles in cell proliferation, differentiation, apoptosis, stress responses, and cell migration/metastasis (1-3). NDRG1 was originally identified as a protein that was upregulated in N-Myc knockout mice (1). Proteins in the NDRG family, particularly NDRG1 and NDRG2, have been reported to be down-regulated in various cancer tissues and have been suggested to function as a tumor suppressors (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: NKX2.5 is a member of the NKX homeobox transcription factor family. NKX2.5 plays an essential role in heart development and is among the earliest factors expressed in the cardiac lineage in developing embryos. Targeted disruption of the murine Nkx2.5 gene results in abnormal heart morphogenesis, severe growth retardation, and embryonic lethality around E9.5 (1,2). Mutations in NKX2.5 are likewise associated with several congenital heart conditions, such as atrial defect with atrioventricular conduction defects (ASD-AVCD) and Tetralogy of Fallot (TOF) (3,4). Transcriptional activation of NKX2.5 is also associated with some B and T cell leukemias that result from chromosomal translocation (5-8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Chromatin IP-seq, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: NKX3.1 is a homeobox transcription factor that in mammals plays a defining role in embryonic prostate morphogenesis. The expression of mammalian NKX3.1 is androgen-dependent, restricted primarily to developing and mature prostate epithelium, and is frequently reduced or lost in prostate cancer (1-3). The human NKX3.1 gene is located on chromsome 8p21.2, within a region that shows loss of heterozygosity (LOH) in >50% of prostate cancer cases (2). Allelic loss at the NKX3.1 locus is also common in high grade Prostate Intraepithelial Neoplasia (PIN), thought to be a putative precursor lesion to invasive prostate adenocarcinomas, suggesting that LOH at the NKX3.1 locus is a critical early step in prostate cancer development (4). Notably, the remaining NKX3.1 allele is intact in the majority of LOH cases, leading to the suggestion that NKX3.1 functions as a haploinsufficient tumor suppressor (4-6). Due to its highly restricted expression in prostate epithelial cells, NKX3.1 has been suggested as a diagnostic marker of prostate carcinoma (7), and may have additional utility as a biomarker of metastatic lesions originating in the prostate (8).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: NKX3.1 is a homeobox transcription factor that in mammals plays a defining role in embryonic prostate morphogenesis. The expression of mammalian NKX3.1 is androgen-dependent, restricted primarily to developing and mature prostate epithelium, and is frequently reduced or lost in prostate cancer (1-3). The human NKX3.1 gene is located on chromsome 8p21.2, within a region that shows loss of heterozygosity (LOH) in >50% of prostate cancer cases (2). Allelic loss at the NKX3.1 locus is also common in high grade Prostate Intraepithelial Neoplasia (PIN), thought to be a putative precursor lesion to invasive prostate adenocarcinomas, suggesting that LOH at the NKX3.1 locus is a critical early step in prostate cancer development (4). Notably, the remaining NKX3.1 allele is intact in the majority of LOH cases, leading to the suggestion that NKX3.1 functions as a haploinsufficient tumor suppressor (4-6). Due to its highly restricted expression in prostate epithelial cells, NKX3.1 has been suggested as a diagnostic marker of prostate carcinoma (7), and may have additional utility as a biomarker of metastatic lesions originating in the prostate (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Nemo-like kinase (NLK ) is a serine/threonine-protein kinase that regulates multiple signaling pathways, including Wnt/β-catenin, TGFβ, IL-6, and Notch (1-4). NLK contributes to cell proliferation, differentiation, cell fate determination during early embryogenesis and nervous system development in vertebrates (5-7). Recent studies showed that NLK is aberrantly expressed in various types of cancer where it regulates cancer cell proliferation, migration, invasion and survival (8-11). NLK is localized predominantly in nucleus and at a lower level in cytoplasm(12). Homodimerization of NLK is required for its activation and nuclear localization. NLK is activated via intermolecular autophosphorylation at Thr286 (13). NLK interacts with and phosphorylates a number of transcription factors including FOXO1, FOXO4, MYB, NOTCH1 and TCF7L2/TCF4, and LEF-1/TCF (14-18). NLK also associates with E3 ubiquitin ligase NARF and Raptor and regulates their function (19,20).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: YAP (Yes-associated protein, YAP65) was identified based on its ability to associate with the SH3 domain of Yes. It also binds to other SH3 domain-containing proteins such as Nck, Crk, Src, and Abl (1). In addition to the SH3 binding motif, YAP contains a PDZ interaction motif, a coiled-coil domain, and WW domains (2-4). While initial studies of YAP all pointed towards a role in anchoring and targeting to specific subcellular compartments, subsequent studies showed that YAP is a transcriptional co-activator by virtue of its WW domain interacting with the PY motif (PPxY) of the transcription factor PEBP2 and other transcription factors (5). In its capacity as a transcriptional co-activator, YAP is now widely recognized as a central mediator of the Hippo Pathway, which plays a fundamental and widely conserved role in regulating tissue growth and organ size. Phosphorylation at multiple sites (e.g., Ser109, Ser127) by LATS kinases promotes YAP translocation from the nucleus to the cytoplasm, where it is sequestered through association with 14-3-3 proteins (6-8). These LATS-driven phosphorylation events serve to prime YAP for subsequent phosphorylation by CK1δ/ε in an adjacent phosphodegron, triggering proteosomal degradation of YAP (9).

$327
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Non-phospho (Active) β-Catenin (Ser33/37/Thr41) (D13A1) Rabbit mAb #8814.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$364
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric and immunofluorescence analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Non-phospho (Active) β-Catenin (Ser45) (D2U8Y) XP® Rabbit mAb #19807.
APPLICATIONS
REACTIVITY
Dog, Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$141
20 µl
$348
100 µl
APPLICATIONS
REACTIVITY
Dog, Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Flow Cytometry, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).