Buy Three, Get the Fourth Free! | Start Saving >>

Product listing: Survivin Blocking Peptide, UniProt ID O15392 #1037 to eIF3C Antibody, UniProt ID Q99613 #2068

$320
100 µg
This peptide is used to specifically block Survivin (71G4) Rabbit mAb #2808 reactivity.
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin)

Background: Survivin is a 16 kDa anti-apoptotic protein highly expressed during fetal development and cancer cell malignancy (1). Survivin binds and inhibits caspase-3, controlling the checkpoint in the G2/M-phase of the cell cycle by inhibiting apoptosis and promoting cell division (2,3). This regulatory process requires the phosphorylation of survivin at Thr34 by p34 cdc2 kinase (4). Gene targeting using a Thr34 phosphorylation-defective survivin mutant, as well as antisense survivin, have been shown to inhibit tumor growth (5,6).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: TNF receptor-associated protein 1 (TRAP1), also known as HSP75, is a mitochondrial chaperone and ATPase that was originally identified as a protein that interacts with the TNF receptor. Although a member of the HSP90 family, TRAP1 is not heat-inducible but is upregulated by glucose deprivation, oxidative injury, and UV irradiation. An amino-terminal mitochondrial localization sequence results in localization of TRAP1 within mitochondria (1). Overexpression of TRAP1 decreases oxidative stress, suggesting a protective role in ischemia injury (2). Research studies demonstrate that silencing of TRAP1 enhances cytochrome C release and apoptosis, with additional evidence indicating that TRAP1 can protect cells from cell death by inhibiting the generation of reactive oxygen species (3). TRAP1 is a substrate of the mitochondrial serine/threonine kinase PINK1, whose corresponding gene is mutated in some forms of early-onset Parkinson's disease (PD). PINK1 protects cells from oxidative stress-induced cell death by suppressing release of cytochrome C from mitochondria. PD-linked PINK1 mutations impair the ability of PINK1 to phosphorylate TRAP1 and leads to impaired cell survival (4). Finally, TRAP1 alleviates α-synuclein induced toxicity and rescues the PINK1 loss-of-function phenotype (5).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: CD31 (Platelet Endothelial Cell Adhesion Molecule-1: PECAM-1), a member of the Ig superfamily of cell adhesion molecules, is expressed by circulating platelets, monocytes, neutrophils, some T cells, and endothelial cells and modulates cell adhesion, endothelial cell migration, and angiogenesis (1). CD31 is phosphorylated on Tyr686 at the cytoplasmic carboxy-terminal tail upon various stimuli (e.g. mechanical or oxidative stress), presumably by Src family members (2). The tyrosine phosphorylation mediates associations with a number of SH2 domain-containing binding partners such as PI3 kinase, SHIP, PLCγ, and SHP-2. Thus, CD31 serves as a scaffold for various signaling molecules (3).

PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan®), among others. PTMScan® Technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur (1). For more information on PTMScan® Proteomics Services, please visit www.cellsignal.com/common/content/content.jsp?id=ptmscan-services.
This peptide is used to block Phospho-Met (Tyr1234/1235) (D26) Rabbit mAb #3077 reactivity in western and dot blot protocols.

Background: Met, a high affinity tyrosine kinase receptor for hepatocyte growth factor (HGF, also known as scatter factor) is a disulfide-linked heterodimer made of 45 kDa α- and 145 kDa β-subunits (1,2). The α-subunit and the amino-terminal region of the β-subunit form the extracellular domain. The remainder of the β-chain spans the plasma membrane and contains a cytoplasmic region with tyrosine kinase activity. Interaction of Met with HGF results in autophosphorylation at multiple tyrosines, which recruit several downstream signaling components, including Gab1, c-Cbl, and PI3 kinase (3). These fundamental events are important for all of the biological functions involving Met kinase activity. The addition of a phosphate at cytoplasmic Tyr1003 is essential for Met protein ubiquitination and degradation (4). Phosphorylation at Tyr1234/1235 in the Met kinase domain is critical for kinase activation. Phosphorylation at Tyr1349 in the Met cytoplasmic domain provides a direct binding site for Gab1 (5). Research studies have shown that altered Met levels and/or tyrosine kinase activities are found in several types of tumors, including renal, colon, and breast. Thus, investigators have concluded that Met is an attractive potential cancer therapeutic and diagnostic target (6,7).

$320
100 µg
This peptide is used to block Phospho-Histone H3 (Ser10) (D2C8) XP Rabbit mAb #3377 reactivity.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Modulation of chromatin structure plays an important role in the regulation of transcription in eukaryotes. The nucleosome, made up of DNA wound around eight core histone proteins (two each of H2A, H2B, H3, and H4), is the primary building block of chromatin (1). The amino-terminal tails of core histones undergo various post-translational modifications, including acetylation, phosphorylation, methylation, and ubiquitination (2-5). These modifications occur in response to various stimuli and have a direct effect on the accessibility of chromatin to transcription factors and, therefore, gene expression (6). In most species, histone H2B is primarily acetylated at Lys5, 12, 15, and 20 (4,7). Histone H3 is primarily acetylated at Lys9, 14, 18, 23, 27, and 56. Acetylation of H3 at Lys9 appears to have a dominant role in histone deposition and chromatin assembly in some organisms (2,3). Phosphorylation at Ser10, Ser28, and Thr11 of histone H3 is tightly correlated with chromosome condensation during both mitosis and meiosis (8-10). Phosphorylation at Thr3 of histone H3 is highly conserved among many species and is catalyzed by the kinase haspin. Immunostaining with phospho-specific antibodies in mammalian cells reveals mitotic phosphorylation at Thr3 of H3 in prophase and its dephosphorylation during anaphase (11).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Bid is a pro-apoptotic “BH3 domain-only” member of the Bcl-2 family originally discovered to interact with both the anti-apoptotic family member Bcl-2 and the pro-apoptotic protein Bax (1). Bid is normally localized in the cytosolic fraction of cells as an inactive precursor and is cleaved at Asp60 by caspase-8 during Fas signaling, leading to translocation of the carboxyl terminal p15 fragment (tBid) to the mitochondrial outer membrane (2-4). Translocation of Bid is associated with release of cytochrome c from the mitochondria, leading to complex formation with Apaf-1 and caspase-9 and resulting in caspase-9 activation (5-7). Thus, Bid relays an apoptotic signal from the cell surface to the mitochondria triggering caspase activation (8,9).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Forkhead box (Fox) proteins are a family of evolutionarily conserved transcription factors containing a sequence known as Forkhead box or winged helix DNA binding domain (1). The human genome contains 43 Fox proteins that are divided into subfamilies. The FoxP subfamily has four members, FoxP1 - FoxP4, which are broadly expressed and play important roles in organ development, immune response and cancer pathogenesis (2-4). The FoxP subfamily has several characteristics that are atypical among Fox proteins: their Forkhead domain is located at the carboxy-terminal region and they contain motifs that promote homo- and heterodimerization. FoxP proteins usually function as transcriptional repressors (4,5).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation but has also been associated with a number of physiological processes including development, differentiation, neurodegeneration, infection, and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and referred to as autophagy-related (Atg) genes. Formation of the autophagosome involves a ubiquitin-like conjugation system in which Atg12 is covalently bound to Atg5 and targeted to autophagosome vesicles (4-6). This conjugation reaction is mediated by the ubiquitin E1-like enzyme Atg7 and the E2-like enzyme Atg10 (7,8).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and NADH to lactate and NAD+. When the oxygen supply is too low for mitochondrial ATP production, this reaction recycles NADH generated in glycolysis to NAD+, which reenters glycolysis. The major form of LDH found in muscle cells is the A (LDHA) isozyme. The LDHA promoter contains HIF-1α binding sites (1). LDHA expression is induced under hypoxic conditions (2). During intensive and prolonged muscle exercise, lactate accumulates in muscle cells when the supply of oxygen does not meet demand. When oxygen levels return to normal, LDH converts lactate to pyruvate to generate ATP in the mitochondrial electron transport chain.

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The zinc finger protein ZPR1 (ZNF259) binds to epidermal growth factor receptor (EGFR) and is localized to both cytoplasm and nucleus. The zinc fingers found in ZPR1 and the tyrosine kinase domain of EGFR mediate the interaction between ZPR1 and the receptor (1). ZPR1 translocates from the cytoplasm to nucleus following mitogen (i.e. EGF) stimulation (2,3). ZPR1 also interacts with translation elongation factor eEF1A in vivo following EGF treatment (3). The interaction between the zinc finger protein and elongation factor is important for cell proliferation. Cells lacking ZPR1 exhibit abnormal nucleolar function, suggesting that ZPR1 is required for cell viability and nucleolar function in dividing cells (3). ZPR1 knockout mice exhibit significant neurodegeneration, and reduced or altered expression of ZPR1 may contribute to spinal muscular atrophy, a disorder characterized by degeneration of spinal cord neurons (4).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: MEP50 (methylosome protein 50) is a component of the methylosome, a protein arginine methyltransferase complex that modifies specific arginine residues found in arginine- and glycine-rich regions of some spliceosomal Sm proteins. MEP50 is important for methylosome activity and may regulate the transfer of Sm proteins to the SMN (survival of motor neurons) complex, an early step in the assembly of U snRNPs. Both the methylosome and the SMN complex are essential for the assembly of spliceosomal snRNPs (1).MEP50 is a WD repeat protein that may provide an interface for multiple protein interactions between methylosome proteins. (1). It binds to JBP1, an arginine protein methyltransferase component of the methylosome. MEP50 has been shown to interact with CTD phosphatase FCP1 (CTDP1), a protein that may link the processes of transcriptional elongation and splicing (2), and with SUZ12, a polycomb group protein involved in transcriptional repression (3). JBP1 and MEP50 have also been reported to interact with the methyl-CpG binding protein complex MBD2/NuRD (4).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: FoxD3 is a member of the Forkhead Box family and is characterized by a winged-helix DNA-binding structure and the important role it plays in embryonic development (1). This transcriptional regulator is required for the maintenance of pluripotency in the pre-implantation and peri-implantation stages of mouse embryonic development (2) and is also required for trophoblast formation (3). FoxD3 is required for the maintenance of the mammalian neural crest; FoxD3(-/-) mouse embryos fail around the time of implantation with loss of neural crest-derived structures (4). FoxD3 also forms a regulatory network with Oct-4 and NANOG to maintain the pluripotency of ES cells (5,6).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Cripto, also known as teratocarcinoma derived growth factor 1 (TDGF-1), belongs to the EGF-CFC family of proteins. Members of this family are characterized by an N-terminal signal peptide, a conserved cysteine rich domain (CFC motif), and a short hydrophobic carboxy-terminal tail that contains GPI cleavage and attachment sites. The GPI moiety anchors Cripto and family members to the extracellular plasma membrane (1). An O-linked fucosylation site within the EGF-like motif is required for Cripto and related family members to perform their function as co-receptors for TGF-β-related ligands such as Nodal and Vg1/GDF1 (2,3). Soluble forms of Cripto can be produced - these contain intact EGF and CFC domains, and are thought to have paracrine activities, as opposed to the autocrine activity of Cripto functioning as a coreceptor (4). Understanding of this paracrine activity is not complete, but it is proposed that Cripto may act as co-ligand for Nodal (3).Cripto is an important modulator of embryogenesis and oncogenesis (4). It is highly expressed in early embryos, and in embryonic stem (ES) cells where it is involved in cardiomyocytic differentiation and acts as a negative regulator of neurogenesis (5-7). Transient activation of Cripto is essential for the capacity of stem cell self-renewal and pluripotency in ES cells, and in some adult derived stem cells (8). Signaling through Cripto can also stimulate other activities that promote tumorigenesis such as stimulation of proliferation, cell motility, invasion, angiogenesis and epithelial-mesenchymal transition (EMT) (9-11). Cripto is highly expressed in a broad range of tumors, where it acts as a potent oncogene.

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: The Drosophila piwi gene was identified as being required for the self-renewal of germline stem cells (1). Piwi homologs are well conserved among various species including Arabidopsis, C. elegans, and Homo sapiens (1). Both Miwi and Mili proteins are mouse homologs of Piwi and contain a C-terminal Piwi domain (2). Miwi and Mili bind to Piwi-interacting RNAs (piRNAs) in male germ cells and are essential for spermatogenesis in mice (3-5).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Monocyte chemotactic protein-1 (MCP-1), also known as CCL2, monocyte chemotactic activating factor (MCAF) or glioma-derived chemotactic factor-2 (GDCF-2), is the product of the human JE gene and a member of the family of C-C (or β) chemokines (1-4). The predicted molecular weight of MCP-1 protein is 11-13 kDa, but it may migrate at 20-30 kDa due to glycosylation. MCP-1 is secreted by a variety of cell types in response to pro-inflammatory stimuli and was originally described for its chemotactic activity on monocytes. This activity has led to studies demonstrating its role in diseases characterized by monocyte infiltrates such as psoriasis (5), rheumatoid arthritis (6) and atherosclerosis (7). MCP-1 may also contribute to tumor progression and angiogenesis (8). Signaling by MCP-1 is mediated by the G-protein coupled receptor CCR2 (9).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: The Silent Information Regulator (SIR2) family of genes is a highly conserved group of genes that encode nicotinamide adenine dinucleotide (NAD)-dependent protein deacetylases, also known as class III histone deacetylases. The first discovered and best characterized of these genes is Saccharomyces cerevisiae SIR2, which is involved in silencing of mating type loci, telomere maintenance, DNA damage response, and cell aging (1). SirT1, the mammalian ortholog of Sir2, is a nuclear protein implicated in the regulation of many cellular processes, including apoptosis, cellular senescence, endocrine signaling, glucose homeostasis, aging, and longevity. Targets of SirT1 include acetylated p53 (2,3), p300 (4), Ku70 (5), forkhead (FoxO) transcription factors (5,6), PPARγ (7), and the PPARγ coactivator-1α (PGC-1α) protein (8). Deacetylation of p53 and FoxO transcription factors represses apoptosis and increases cell survival (2,3,5,6). Deacetylation of PPARγ and PGC-1α regulates the gluconeogenic/glycolytic pathways in the liver and fat mobilization in white adipocytes in response to fasting (7,8). SirT1 deacetylase activity is inhibited by nicotinamide and activated by resveratrol. In addition, SirT1 activity may be regulated by phosphorylation, as it is phosphorylated at Ser27 and Ser47 in vivo; however, the function of these phosphorylation sites has not yet been determined (9).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Monocyte chemotactic protein-1 (MCP-1), also known as CCL2, monocyte chemotactic activating factor (MCAF) or glioma-derived chemotactic factor-2 (GDCF-2), is the product of the human JE gene and a member of the family of C-C (or β) chemokines (1-4). The predicted molecular weight of MCP-1 protein is 11-13 kDa, but it may migrate at 20-30 kDa due to glycosylation. MCP-1 is secreted by a variety of cell types in response to pro-inflammatory stimuli and was originally described for its chemotactic activity on monocytes. This activity has led to studies demonstrating its role in diseases characterized by monocyte infiltrates such as psoriasis (5), rheumatoid arthritis (6) and atherosclerosis (7). MCP-1 may also contribute to tumor progression and angiogenesis (8). Signaling by MCP-1 is mediated by the G-protein coupled receptor CCR2 (9).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: DHCR24/Seladin-1 was identified as a molecular basis for desmosterolosis (1). It encodes for 24-dehydrocholesterol reductase (3β-hydroxysterol Δ-24-reductase). This enzyme reduces desmosterol in cholesterol biosynthesis (1). Recessive mutations in this gene in desmosterolosis patients lead to a defective enzyme resulting in increased levels of desmosterol (1). DHCR24/Seladin-1 is induced upon oxidative stress and was found to mediate Ras-induced senescence resulting from increased reactive oxygen species (2). Studies further indicate that the level of DHCR24/Seladin-1 is induced in the acute response and reduced in the chronic response to oxidative stress in a cholesterol dependent manner (3). Moreover, overexpression of DHCR24/Seladin-1 bearing two mutations that abolish its reductase acitivity causes the cells to lose protection from oxidative stress (3). These findings thus link the reductase activity of DHCR24/Seladin-1 to its protective role in oxidative stress. This enzyme has also been demonstrated to be a hydrogen peroxide scavenger (4).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Protein phosphatase type 2A (PP2A) is an essential protein serine/threonine phosphatase that is conserved in all eukaryotes. PP2A is a key enzyme within various signal transduction pathways as it regulates fundamental cellular activities such as DNA replication, transcription, translation, metabolism, cell cycle progression, cell division, apoptosis and development (1-3). The core enzyme consists of catalytic C and regulatory A (or PR65) subunits, with each subunit represented by α and β isoforms (1). Additional regulatory subunits belong to four different families of unrelated proteins. Both the B (or PR55) and B' regulatory protein families contain α, β, γ and δ isoforms, with the B' family also including an ε protein. B'' family proteins include PR72, PR130, PR59 and PR48 isoforms, while striatin (PR110) and SG2NA (PR93) are both members of the B''' regulatory protein family. These B subunits competitively bind to a shared binding site on the core A subunit (1). This variable array of holoenzyme components, particularly regulatory B subunits, allows PP2A to act in a diverse set of functions. PP2A function is regulated by expression, localization, holoenzyme composition and post-translational modification. Phosphorylation of PP2A at Tyr307 by Src occurs in response to EGF or insulin and results in a substantial reduction of PP2A activity (4). Reversible methylation on the carboxyl group of Leu309 of PP2A has been observed (5,6). Methylation alters the conformation of PP2A, as well as its localization and association with B regulatory subunits (6-8).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Nerve growth factor (NGF) is a small, secreted protein and member of the neurotrophin family of growth factors that promote neuronal cell survival and differentiation (1). Producing cells release NGF that bind and activate TrkA high affinity receptors to mediate NGF-driven signaling. NGF also binds to a low affinity p75 (NTR) receptors, which belong to the death receptor family (2). Although NGF has been classically described as favoring neuron survival and differentiation, nerve growth factor can promote apoptosis in cells that contain p75 (NTR) and lack TrkA. NGF can induce neuron death in a variety of neurodegenerative conditions, including Alzheimer disease (3). Besides its neurotrophic actions, NGF has an effect on non-neuronal cells and may help mediate inflammation, angiogenesis, and stimulate breast cancer cell growth (4-6). NGF signaling is looking increasingly promising as potential drug targets for diseases.

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Modulation of chromatin structure plays a critical role in the regulation of transcription and replication of the eukaryotic genome. The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. In addition to the growing number of post-translational histone modifications regulating chromatin structure, cells can also exchange canonical histones with variant histones that can directly or indirectly modulate chromatin structure (1). CENP-A, also known as the chromatin-associated protein CSE4 (capping-enzyme suppressor 4-p), is an essential histone H3 variant that replaces canonical histone H3 in centromeric heterochromatin (2). The greatest divergence between CENP-A and canonical histone H3 occurs in the amino-terminal tail of the protein, which binds linker DNA between nucleosomes and facilitates proper folding of centromeric heterochromatin (3). The amino-terminal tail of CENP-A is also required for recruitment of other centromeric proteins (CENP-C, hSMC1, hZW10), proper kinetochore assembly and chromosome segregation during mitosis (4). Additional sequence divergence in the histone fold domain is responsible for correct targeting of CENP-A to the centromere (5). Many of the functions of CENP-A are regulated by phosphorylation (6,7). Aurora A-dependent phosphorylation of CENP-A on Ser7 during prophase is required for proper targeting of Aurora B to the inner centromere in prometaphase, proper kinetochore/microtubule attachment and proper alignment of chromosomes during mitosis (6).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Modulation of chromatin structure plays a critical role in the regulation of transcription and replication of the eukaryotic genome. The nucleosome, made up of four core histone proteins (H2A, H2B, H3, and H4), is the primary building block of chromatin. In addition to the growing number of post-translational histone modifications regulating chromatin structure, cells can also exchange canonical histones with variant histones that can directly or indirectly modulate chromatin structure (1). CENP-A, also known as the chromatin-associated protein CSE4 (capping-enzyme suppressor 4-p), is an essential histone H3 variant that replaces canonical histone H3 in centromeric heterochromatin (2). The greatest divergence between CENP-A and canonical histone H3 occurs in the amino-terminal tail of the protein, which binds linker DNA between nucleosomes and facilitates proper folding of centromeric heterochromatin (3). The amino-terminal tail of CENP-A is also required for recruitment of other centromeric proteins (CENP-C, hSMC1, hZW10), proper kinetochore assembly and chromosome segregation during mitosis (4). Additional sequence divergence in the histone fold domain is responsible for correct targeting of CENP-A to the centromere (5). Many of the functions of CENP-A are regulated by phosphorylation (6,7). Aurora A-dependent phosphorylation of CENP-A on Ser7 during prophase is required for proper targeting of Aurora B to the inner centromere in prometaphase, proper kinetochore/microtubule attachment and proper alignment of chromosomes during mitosis (6).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Tug (Tether containing UBX domain for GLUT4), also known as ASPL, ASPSCR1, RCC17, UBXD9, UBXN9, was first identified as a chromosomal translocation partner for TFE3 in patients with Alveolar soft part sarcoma (1) and contains an UBX-like domain in its C-terminal region. Tug is found to tether GLUT4 in intracellular vesicles and to release GLUT4 for cell surface translocation upon insulin stimulation (2). Stable Tug depletion or expression of a dominant negative form stimulates GLUT4 redistribution (3).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Activation of protein kinase C (PKC) is one of the earliest events in a cascade that controls a variety of cellular responses, including secretion, gene expression, proliferation, and muscle contraction (1,2). PKC isoforms belong to three groups based on calcium dependency and activators. Classical PKCs are calcium-dependent via their C2 domains and are activated by phosphatidylserine (PS), diacylglycerol (DAG), and phorbol esters (TPA, PMA) through their cysteine-rich C1 domains. Both novel and atypical PKCs are calcium-independent, but only novel PKCs are activated by PS, DAG, and phorbol esters (3-5). Members of these three PKC groups contain a pseudo-substrate or autoinhibitory domain that binds to substrate-binding sites in the catalytic domain to prevent activation in the absence of cofactors or activators. Control of PKC activity is regulated through three distinct phosphorylation events. Phosphorylation occurs in vivo at Thr500 in the activation loop, at Thr641 through autophosphorylation, and at the carboxy-terminal hydrophobic site Ser660 (2). Atypical PKC isoforms lack hydrophobic region phosphorylation, which correlates with the presence of glutamic acid rather than the serine or threonine residues found in more typical PKC isoforms. The enzyme PDK1 or a close relative is responsible for PKC activation. A recent addition to the PKC superfamily is PKCμ (PKD), which is regulated by DAG and TPA through its C1 domain. PKD is distinguished by the presence of a PH domain and by its unique substrate recognition and Golgi localization (6). PKC-related kinases (PRK) lack the C1 domain and do not respond to DAG or phorbol esters. Phosphatidylinositol lipids activate PRKs, and small Rho-family GTPases bind to the homology region 1 (HR1) to regulate PRK kinase activity (7).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Ectonucleotide pyrophosphatase-phosphodiesterase 1 (ENPP1) is a single-pass, type II transmembrane protein primarily involved in ATP hydrolysis at the plasma membrane. Targeting of ENPP1 to the basolateral cell surface relies on the presence of a carboxy-terminal di-leucine-based signal (1). ENPP1 plays important roles in bone mineralization and soft tissue calcification (2-5). Mutations in the corresponding ENPP1 gene cause generalized arterial calcification in infancy (GACI) and idiopathic infantile arterial calcification (IIAC) (6,7). ENPP1 inhibits insulin receptor function and overexpression of this enzyme causes insulin resistance and glucose intolerance in mice (8,9). Genetic variants of ENPP1 have been associated with obesity and type 2 diabetes (10-12).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Acetylation of the histone tail causes chromatin to adopt an "open" conformation, allowing increased accessibility of transcription factors to DNA. The identification of histone acetyltransferases (HATs) and their large multiprotein complexes has yielded important insights into how these enzymes regulate transcription (1,2). HAT complexes interact with sequence-specific activator proteins to target specific genes. In addition to histones, HATs can acetylate nonhistone proteins, suggesting multiple roles for these enzymes (3). In contrast, histone deacetylation promotes a "closed" chromatin conformation and typically leads to repression of gene activity (4). Mammalian histone deacetylases can be divided into three classes on the basis of their similarity to various yeast deacetylases (5). Class I proteins (HDACs 1, 2, 3, and 8) are related to the yeast Rpd3-like proteins, those in class II (HDACs 4, 5, 6, 7, 9, and 10) are related to yeast Hda1-like proteins, and class III proteins are related to the yeast protein Sir2. Inhibitors of HDAC activity are now being explored as potential therapeutic cancer agents (6,7).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: WIF1 (Wnt inhibitory factor 1) is a secreted protein that binds to Wnt proteins and inhibits their activity (1). It contains an N-terminal WIF domain and five EGF-like repeats (2). The WIF1 ortholog in Drosophila, Shifted, is required for Hedgehog stability and diffusion (3,4). It has been reported that WIF1 expression is downregulated in many types of cancers (5-8).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Ribosomal protein L26 (RPL26) is a component of the 60S ribosomal subunit and is involved in translation (1,2). It was shown that RPL26 increases the translation of p53 mRNA by binding to its 5' untranslated region (UTR) after DNA damage. Studies found that overexpression of RPL26 enhances the binding of p53 mRNA to the ribosomes and increases p53 translation. Overexpression of RPL26 also induces cell-cycle arrest at G1 phase and increases radiation-stimulated apoptosis (2).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Translation initiation requires a set of factors to facilitate the association of the 40S ribosomal subunit with mRNA. The eIF4F complex, consisting of eIF4E, eIF4A, and eIF4G, binds to the 5' cap structure of mRNA. eIF4F and eIF4B unwind the secondary structure of mRNA at its 5' untranslated region. The 40S ribosomal subunit, along with some initiation factors including eIF3, then binds to the 5' mRNA cap and searches along the mRNA for the initiation codon. eIF3 is a large translation initiation complex with 10 to 13 different subunits. eIF3A, eIF3B, eIF3C, eIF3E, eIF3F, and eIF3H are the core subunits critical for the function of this complex. eIF3 physically interacts with eIF4G, which may be responsible for the association of the 40S ribosomal subunit with mRNA (1). eIF3 also stabilizes the binding of Met-tRNAf.eIF2.GTP to the 40S ribosomal subunit and helps keep the integrity of the resulting complex upon addition of the 60S ribosomal subunit (2). Studies have shown that mTOR interacts with eIF3 directly (3,4). When cells are stimulated by hormones or mitogenic signals, mTOR binds to the eIF3 complex and phosphorylates S6K1 (3). This process results in the dissociation of S6K1 from eIF3 and S6K1 activation. The activated S6K1 then phosphorylates its downstream targets including ribosomal protein S6 and eIF4B, resulting in stimulation of translation. Further findings demonstrated that activated mTOR signaling induces the association of eIF3 with eIF4G upon stimulation with insulin (3).