Interested in promotions? | Click here >>

Product listing: Stat Antibody Sampler Kit #9939 to EpCAM (E6V8Y) XP® Rabbit mAb (Mouse Preferred), UniProt ID Q99JW5 #93790

The Stat Antibody Sampler Kit provides an economical means to examine multiple Stat proteins: Stat1, Stat3, Stat5 and Stat6. The kit contains enough primary and secondary antibodies to perform two Western blot experiments.

Background: Jaks (Janus Kinases) and Stats (Signal Transducers and Activators of Transcription) are utilized by receptors for a wide variety of ligands including cytokines, hormones, growth factors and neurotransmitters. Jaks, activated via autophosphorylation following ligand-induced receptor aggregation, phosphorylate tyrosine residues on associated receptors, Stat molecules and other downstream signaling proteins (1,2). The phosphorylation of Stat proteins at conserved tyrosine residues activates SH2-mediated dimerization followed rapidly by nuclear translocation. Stat dimers bind to IRE (interferon response element) and GAS (gamma interferon-activated sequence) DNA elements, resulting in the transcriptional regulation of downstream genes (1,2). The remarkable range and specificity of responses regulated by the Stats is determined in part by the tissue-specific expression of different cytokine receptors, Jaks and Stats (2,3), and by the combinatorial coupling of various Stat members to different receptors. Serine phosphorylation in the carboxy-terminal transcriptional activation domain has been shown to regulate the function of Stat1, -2, -3, -4 and -5 (1). Phosphorylation of Stat3 at Ser727 via MAPK or mTOR pathways is required for optimal transcriptional activation in response to growth factors and cytokines including IFN-gamma and CNTF (4,5). Jak/Stat pathways also play important roles in oncogenesis, tumor progression, angiogenesis, cell motility, immune responses and stem cell differentiation (6-11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), also referred to as Apo2 ligand, first identified based on its sequence homology to TNF and Fas/Apo ligand is a member of the TNF family of cytokines and either exists as a type II membrane or soluble protein (1,2). TRAIL induces apoptosis in a variety of transformed cell lines and plays a role in anti-tumor and anti-viral immune surveillance (3). TRAIL signals via binding with death receptors DR4 (TRAIL-R1) (4) and DR5 (TRAIL-R2) (5-8) which can trigger apoptosis as well as NF-κB activation (7,9). Death domains on these receptors leads to the recruitment of a death-induced signaling complex (DISC) leading to caspase-8 and subsequent caspase-3 activation. In addition, TRAIL binds with decoy receptors DcR1 (TRAIL-R3) (10-13) and DcR2 (TRAIL-R4, TRUNDD) (14-15) which lack the functional cytoplasmic death domain antagonizing TRAIL-induced apoptosis. Osteoprotegerin (OPG) has also been identified as receptor capable of inhibiting TRAIL-induced apoptosis (16). The selectivity of soluble TRAIL at triggering apoptosis in transformed cells as compared to normal cells has led to its investigation as a potential cancer therapeutic (17-18).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The family of Trk receptor tyrosine kinases consists of TrkA, TrkB, and TrkC. While the sequence of these family members is highly conserved, they are activated by different neurotrophins: TrkA by NGF, TrkB by BDNF or NT4, and TrkC by NT3 (1). Neurotrophin signaling through these receptors regulates a number of physiological processes, such as cell survival, proliferation, neural development, and axon and dendrite growth and patterning (1). In the adult nervous system, the Trk receptors regulate synaptic strength and plasticity. TrkA regulates proliferation and is important for development and maturation of the nervous system (2). Phosphorylation at Tyr490 is required for Shc association and activation of the Ras-MAP kinase cascade (3,4). Residues Tyr674/675 lie within the catalytic domain, and phosphorylation at these sites reflects TrkA kinase activity (3-6). Point mutations, deletions, and chromosomal rearrangements (chimeras) cause ligand-independent receptor dimerization and activation of TrkA (7-10). TrkA is activated in many malignancies including breast, ovarian, prostate, and thyroid carcinomas (8-13). Research studies suggest that expression of TrkA in neuroblastomas may be a good prognostic marker as TrkA signals growth arrest and differentiation of cells originating from the neural crest (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of the neurotransmitter dopamine and other catecholamines. TH functions as a tetramer, with each subunit composed of a regulatory and catalytic domain, and exists in several different isoforms (1,2). This enzyme is required for embryonic development since TH knockout mice die before or at birth (3). Levels of transcription, translation and posttranslational modification regulate TH activity. The amino-terminal regulatory domain contains three serine residues: Ser9, Ser31 and Ser40. Phosphorylation at Ser40 by PKA positively regulates the catalytic activity of TH (4-6). Phosphorylation at Ser31 by CDK5 also increases the catalytic activity of TH through stabilization of TH protein levels (7-9).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated DYKDDDDK Tag (D6W5B) Rabbit mAb (Binds to same epitope as Sigma's Anti-FLAG® M2 Antibody) #14793.
APPLICATIONS
REACTIVITY
All Species Expected

Application Methods: Flow Cytometry

Background: Epitope tags are useful for the labeling and detection of proteins using immunoblotting, immunoprecipitation, and immunostaining techniques. Because of their small size, they are unlikely to affect the tagged protein’s biochemical properties.

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Interferon regulatory factors (IRFs) comprise a family of transcription factors that function within the Jak/Stat pathway to regulate interferon (IFN) and IFN-inducible gene expression in response to viral infection (1). IRFs play an important role in pathogen defense, autoimmunity, lymphocyte development, cell growth, and susceptibility to transformation. The IRF family includes nine members: IRF-1, IRF-2, IRF-9/ISGF3γ, IRF-3, IRF-4 (Pip/LSIRF/ICSAT), IRF-5, IRF-6, IRF-7, and IRF-8/ICSBP. All IRF proteins share homology in their amino-terminal DNA-binding domains. IRF family members regulate transcription through interactions with proteins that share similar DNA-binding motifs, such as IFN-stimulated response elements (ISRE), IFN consensus sequences (ICS), and IFN regulatory elements (IRF-E) (2).

The StemLight™ iPS cell Reprogramming Antibody Kit contains a panel of antibodies for the detection of various proteins, combinations of which have been used to reprogram somatic cells to Induced Pluripotent Stem (iPS) cells. The kit can be used to track efficiency of expression of the reprogramming factors following transfection, viral transduction and other means of protein delivery. The kit components are pre-optimized for parallel use in immunofluorescent analysis at a standard dilution, but components are also validated for use in other applications --please refer to individual data sheet information for application specific recommendations. Enough reagents are provided for 160 immunofluorescent assays based on a working volume of 100 μl.

Background: Pluripotency is the ability of a cell to differentiate into cell types of the three germ layers, the endoderm, ectoderm and mesoderm. It is a property shared by embryonic stem cells, embryonic carcinoma and induced pluripotent cells.Oct-4, Sox2 and Nanog are key transcriptional regulators that are highly expressed in pluripotent cells (1). Together they form a transcriptional network that maintains cells in a pluripotent state (2,3). Over-expression of Oct-4 and Sox2 along with Klf4 and c- Myc can induce pluripotency in both mouse and human somatic cells, highlighting their roles as key regulators of the transcrip- tional network necessary for renewal and pluripotency (4-5). It has also been demonstrated that overexpression of Oct-4, Sox2, Nanog and Lin28 can induce pluripotency in human somatic cells (6). Upon differentiation of pluripotent cultures, expression of Oct-4, Nanog and Sox2 is downregulated.SSEA4, TRA-1-81 and TRA-1-60 antibodies recognize antigens expressed on the cell surface of all pluripotent cells. SSEA4 recognizes a glycolipid carbohydrate epitope (7). TRA-1-60(S) and TRA-1-81 antibodies recognize different proteoglycan epitopes on variants of the same protein, podocalyxin (8). These epitopes are neuraminadase sensitive and resistant, respectively. Reactivity of SSEA4, TRA-1-81 and TRA-1-60 antibodies with their respective cell surface markers are lost upon differentiation of pluripotent cells, corresponding with a loss of pluripotent potential (9).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The breast cancer susceptibility proteins BRCA1 and BRCA2 are frequently mutated in cases of hereditary breast and ovarian cancers and have roles in multiple processes related to DNA damage, repair, cell cycle progression, transcription, ubiquitination, and apoptosis (1-4). BRCA2 has been shown to be required for localization of Rad51 to sites of double stranded breaks (DSBs) in DNA, and cells lacking BRCA1 and BRCA2 cannot repair DSBs through the Rad51-dependent process of homologous recombination (HR) (5). Numerous DNA damage-induced phosphorylation sites on BRCA1 have been identified, including Ser988, 1189, 1387, 1423, 1457, 1524, and 1542, and kinases activated in a cell cycle-dependent manner, including Aurora A and CDK2, can also phosphorylate BRCA1 at Ser308 and Ser1497, respectively (6-10). Cell cycle-dependent phosphorylation of BRCA2 at Ser3291 by CDKs has been proposed as a mechanism to switch off HR as cells progress beyond S-phase by blocking the carboxy terminal Rad51 binding site (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Monocyte chemotactic protein-1 (MCP-1), also known as CCL2, monocyte chemotactic activating factor (MCAF) or glioma-derived chemotactic factor-2 (GDCF-2), is the product of the human JE gene and a member of the family of C-C (or β) chemokines (1-4). The predicted molecular weight of MCP-1 protein is 11-13 kDa, but it may migrate at 20-30 kDa due to glycosylation. MCP-1 is secreted by a variety of cell types in response to pro-inflammatory stimuli and was originally described for its chemotactic activity on monocytes. This activity has led to studies demonstrating its role in diseases characterized by monocyte infiltrates such as psoriasis (5), rheumatoid arthritis (6) and atherosclerosis (7). MCP-1 may also contribute to tumor progression and angiogenesis (8). Signaling by MCP-1 is mediated by the G-protein coupled receptor CCR2 (9).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Mammalian sterile-20-like (MST) kinases are upstream regulators of mitogen-activated protein kinase (MAPK) signaling pathways that regulate multiple cellular processes, including proliferation, apoptosis, migration, and cytoskeletal rearrangement (1). This family of serine/threonine kinases includes MST1 (STK4) and MST2 (STK3), two functionally related proteins with conserved amino-terminal kinase domains and carboxy-terminal regulatory domains that contain nuclear export signals (1-3). During apoptosis, caspase-mediated cleavage of MST1/2 removes the inhibitory regulatory domain, triggering autophosphorylation and activation of the kinase domain, which is translocated to the nucleus. Nuclear translocation of the active kinase induces chromatin condensation and other events associated with apoptotic progression (4).Research studies indicate that MST1/2 are orthologous to Drosophila Hippo (Hpo), one of the core regulatory proteins in the Hippo signaling pathway. This evolutionarily conserved program controls tissue growth and organ size by regulating cell proliferation, apoptosis, and stem cell self-renewal. The mammalian Hippo signaling pathway involves a kinase cascade, where the MST1/2 kinases and the SAV1 scaffold protein form a complex that leads to phosphorylation and activation of LATS1/2. The LATS1/2 kinases phosphorylate YAP and TAZ, promoting cytoplasmic sequestration and inhibition of these transcription coactivators (5).

The BCA Protein Assay Kit can be used to measure the protein concentration of lysates or homogenates, in microplate format, prepared with the following buffers: Cell Lysis Buffer (10X) #9803, RIPA Buffer (10X) #9806, PathScan® Sandwich ELISA Lysis Buffer (1X) #7018. The dynamic range for this assay is 0.125 - 2 mg/mL. It is recommended that the BCA Compatibility Reagent be used to decrease interference from reducing agents, chelators, detergents, and other common ingredients found in most lysis buffers. Please see the attached protocol for additional details.
$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Secretory proteins translocate into the endoplasmic reticulum (ER) during synthesis where they are post-translationally modified and properly folded. To reach their native conformation, many secretory proteins require the formation of intra- or inter-molecular disulfide bonds (1). This process is called oxidative protein folding. Protein disulfide isomerase (PDI) has two thioredoxin homology domains and catalyzes the formation and isomerization of these disulfide bonds (2). Other ER resident proteins that possess thioredoxin homology domains, including ER stress protein 72 (ERp72), constitute the PDI family (3,4). ERp72 contains three thioredoxin homology domains (3) and plays a role in the formation and isomerization of disulfide bonds (3,4).

$146
100 µl
Affinity purified mouse anti-rabbit IgG (Conformation Specific) antibody. This product has been optimized for use as a secondary antibody in Western blotting applications.
APPLICATIONS

Application Methods: Western Blotting

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation

Background: Cytochrome c is a well conserved electron-transport protein and is part of the respiratory chain localized to mitochondrial intermembrane space (1). Upon apoptotic stimulation, cytochrome c released from mitochondria associates with procaspase-9 (47 kDa)/Apaf 1. This complex processes caspase-9 from inactive proenzyme to its active form (2). This event further triggers caspase-3 activation and eventually leads to apoptosis (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: The endocannabinoid system consists of the cannabinoid receptors, CB1 and CB2 receptors, the enzymes that produce and degrade the endogenous cannabinoid ligands (such as FAAH, DAG lipases, and MAG lipase), and the endocannabinoid ligands derived from the metabolism of arachidonic acid, 2-arachidonoylglycerol (2-AG) and anandamide (1-3). CB1 receptor belongs to the superfamily of G protein-coupled receptors (GPCRs) and harbors a large N-terminal extracellular domain, seven transmembrane domains, and a C-terminal intracellular tail. CB1 receptor is coupled to the Gai/o subunit of the G protein which inhibits adenylyl cyclases and regulates calcium and potassium ion channels (4). CB1 receptor is one of the most abundant GPCRs in the central nervous system. It has been show to play critical roles in the wiring of the brain during development (5), in neuronal plasticity (6), analgesia, drug abuse and metabolic homeostasis (7). In addition, CB1 receptor has been shown to interact with other GPCRs, to give rise to novel pharmacological and signaling heteromers with implication in diseases (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Bax is a key component for cellular induced apoptosis through mitochondrial stress (1). Upon apoptotic stimulation, Bax forms oligomers and translocates from the cytosol to the mitochondrial membrane (2). Through interactions with pore proteins on the mitochondrial membrane, Bax increases the membrane's permeability, which leads to the release of cytochrome c from mitochondria, activation of caspase-9 and initiation of the caspase activation pathway for apoptosis (3,4).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Olfactomedin-4 (OLFM4, hGC-1) is a member of the Olfactomedin family, a small group of extracellular proteins defined by the presence of a conserved "Olfactomedin domain" that is thought to facilitate protein-protein interactions (1). OLFM4 is a secreted glycoprotein, which forms disulfide bond-mediated oligomers, and is thought to mediate cell adhesion through its interactions with extracellular matrix proteins such as lectins (2). Human OLFM4 was first cloned from myeloid cells (3) and is expressed in a distinct subset of neutrophils, though the functional significance of this differential expression pattern remains unclear (4). Among normal tissues, the expression of OLFM4 protein is most abundant in intestinal crypts (5), where it has garnered attention as a possible marker of intestinal stem cells (6). Notably, OLFM4 expression is markedly increased in several tumor types, including colorectal, gastric, pancreas, lung, and breast (reviewed in [1]). Furthermore, research studies show that the expression levels of OLFM4 vary in relation to the severity and/or differentiation status of multiple tumor types (1, 6-8), leading to the suggestion that OLFM4 may have utility as a prognostic marker in some cancer patients (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the ligand-activated nuclear receptor superfamily and functions as a transcriptional activator (1). PPARγ is preferentially expressed in adipocytes as well as in vascular smooth muscle cells and macrophage (2). Besides its role in mediating adipogenesis and lipid metabolism (2), PPARγ also modulates insulin sensitivity, cell proliferation and inflammation (3). PPARγ transcriptional activity is inhibited by MAP kinase phosphorylation of PPARγ at Ser84 (4,5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 555 fluorescent dye and tested in-house for immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated EpCAM (VU1D9) Mouse mAb #2929.
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry)

Background: Epithelial cell adhesion and activating molecule (EpCAM/CD326) is a transmembrane glycoprotein that mediates Ca2+-independent, homophilic adhesions on the basolateral surface of most epithelial cells. EpCAM is not expressed in adult squamous epithelium, but it is highly expressed in adeno and squamous cell carcinomas (1). Research studies identified EpCAM as one of the first tumor-associated antigens, and it has long been a marker of epithelial and tumor tissue. Investigators have shown that EpCAM is highly expressed in cancer cells (reviewed in 2,3).

$303
100 µl
APPLICATIONS
REACTIVITY
Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: N-methyl-D-aspartate receptor (NMDAR) forms a heterodimer of at least one NR1 and one NR2A-D subunit. Multiple receptor isoforms with distinct brain distributions and functional properties arise by selective splicing of the NR1 transcripts and differential expression of the NR2 subunits. NR1 subunits bind the co-agonist glycine and NR2 subunits bind the neurotransmitter glutamate. Activation of the NMDA receptor or opening of the ion channel allows flow of Na+ and Ca2+ ions into the cell, and K+ out of the cell (1). Each subunit has a cytoplasmic domain that can be directly modified by the protein kinase/phosphatase (2). PKC can phosphorylate the NR1 subunit (NMDAR1) of the receptor at Ser890/Ser896, and PKA can phosphorylate NR1 at Ser897 (3). The phosphorylation of NR1 by PKC decreases its affinity for calmodulin, thus preventing the inhibitory effect of calmodulin on NMDAR (4). The phosphorylation of NR1 by PKA probably counteracts the inhibitory effect of calcineurin on the receptor (5). NMDAR mediates long-term potentiation and slow postsynaptic excitation, which play central roles in learning, neurodevelopment, and neuroplasticity (6).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: PTEN (phosphatase and tensin homologue deleted on chromosome ten), also referred to as MMAC (mutated in multiple advanced cancers) phosphatase, is a tumor suppressor implicated in a wide variety of human cancers (1). PTEN encodes a 403 amino acid polypeptide originally described as a dual-specificity protein phosphatase (2). The main substrates of PTEN are inositol phospholipids generated by the activation of the phosphoinositide 3-kinase (PI3K) (3). PTEN is a major negative regulator of the PI3K/Akt signaling pathway (1,4,5). PTEN possesses a carboxy-terminal, noncatalytic regulatory domain with three phosphorylation sites (Ser380, Thr382, and Thr383) that regulate PTEN stability and may affect its biological activity (6,7). PTEN regulates p53 protein levels and activity (8) and is involved in G protein-coupled signaling during chemotaxis (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Calpain is a calcium-dependent thiol proteinase that is functionally active as a heterodimer composed of a small regulatory subunit and one of at least two large catalytic subunits (calpain 1 or calpain 2). In vitro, calpain 1 (mu-calpain) requires micromolar levels of calcium, while calpain 2 (M-calpain) requires millimolar levels of calcium for activation. The regulation of calpain in vivo is the subject of many current studies, which suggest that proteolytic activity is regulated post-transcriptionally by mechanisms such as calcium requirements, subcellular localization of the heterodimer, phosphorylation via the EGFR-Erk signaling cascade, endogenous inhibitors (calpastatin) and autoproteolytic cleavage (1). Calpastatin negatively regulates autoproteolytic cleavage of calpain 1 between Gly27 and Leu28 (2). Calpain influences cell migration by modifying rather than degrading its substrates responsible for cell adhesion and cytoskeletal arrangement. Control of calpain activity has caught the attention of drug development since limiting its activity could mute invasiveness of tumors or chronic inflammation (1).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Calreticulin (D3E6) XP® Rabbit mAb #12238.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: Calcium is a universal signaling molecule involved in many cellular functions such as cell motility, metabolism, protein modification, protein folding, and apoptosis. Calcium is stored in the endoplasmic reticulum (ER), where it is buffered by calcium binding chaperones such as calnexin and calreticulin, and is released via the IP3 Receptor channel (1). Calreticulin also functions as an ER chaperone that ensures proper folding and quality control of newly synthesized glycoproteins. As such, calreticulin presumably does not alter protein folding but regulates proper timing for efficient folding and subunit assembly. Furthermore, calreticulin retains proteins in non-native conformation within the ER and targets them for degradation (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Snail is a zinc-finger transcription factor that can repress E-cadherin transcription. Downregulation of E-cadherin is associated with epithelial-mesenchymal transition during embryonic development, a process also exploited by invasive cancer cells (1-3). Indeed, loss of E-cadherin expression is correlated with the invasive properties of some tumors and there is a considerable inverse correlation between Snail and E-cadherin mRNA levels in epithelial tumor cell lines (4,5). In addition, Snail blocks the cell cycle and confers resistance to cell death (6). Phosphorylation of Snail by GSK-3 and PAK1 regulates its stability, cellular localization and function (7-10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Actin, a ubiquitous eukaryotic protein, is the major component of the cytoskeleton. At least six isoforms are known in mammals. Nonmuscle β- and γ-actin, also known as cytoplasmic actin, are predominantly expressed in nonmuscle cells, controlling cell structure and motility (1). α-cardiac and α-skeletal actin are expressed in striated cardiac and skeletal muscles, respectively; two smooth muscle actins, α- and γ-actin, are found primarily in vascular smooth muscle and enteric smooth muscle, respectively. These actin isoforms regulate the contractile potential of muscle cells (1). Actin exists mainly as a fibrous polymer, F-actin. In response to cytoskeletal reorganizing signals during processes such as cytokinesis, endocytosis, or stress, cofilin promotes fragmentation and depolymerization of F-actin, resulting in an increase in the monomeric globular form, G-actin (2). The ARP2/3 complex stabilizes F-actin fragments and promotes formation of new actin filaments (2). Research studies have shown that actin is hyperphosphorylated in primary breast tumors (3). Cleavage of actin under apoptotic conditions has been observed in vitro and in cardiac and skeletal muscle, as shown in research studies (4-6). Actin cleavage by caspase-3 may accelerate ubiquitin/proteasome-dependent muscle proteolysis (6).

The p70 S6 Kinase Substrates Antibody Sampler Kit provides a fast and economical means of evaluating several substrates of p70 S6 Kinase. The kit contains enough primary and secondary antibody to perform two Western blot experiments.
$303
100 µl
APPLICATIONS
REACTIVITY
All Species Expected, Human, Mouse, Rat

Application Methods: Western Blotting

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Nitric oxide (NO) is implicated in carcinogenesis (1), chronic infection, inflammation (2) and neurodegeneration (3). High levels of both superoxide and nitric oxide in tissues interact to form peroxynitrite, a potent oxidant that can modify Tyr residues in proteins to form 3-nitro-tyrosine (4). Tyrosine nitration of mitochondrial manganese superoxide dismutase results in loss of enzymatic activity (4). The nitration of p53 at Tyr residues abolishes its capacity for binding to its DNA consensus sequence (5).

$61
60 µl
Micrococcal nuclease is a relatively non-specific endo-exonuclease derived from Staphylococcus aureus. Active in the pH range of 7.0-10.0, this product digests double-stranded, single-stranded, circular, and linear nucleic acids.In the SimpleChIP® Enzymatic Chromatin IP kit assay, following cell lysis, the chromatin is fragmented by partial digestion with micrococcal nuclease to obtain chromatin fragments of 1 to 5 nucleosomes in size. Enzymatic digestion of chromatin is much milder than sonication and eliminates problems due to variability in sonication power and emulsification of chromatin during sonication, which can result in incomplete fragmentation of chromatin or loss of antibody epitopes due to protein denaturation and degradation.This product is offered to conveniently provide additional micrococcal nuclease when fragmenting chromatin with our SimpleChIP® (#9002, #9003) and SimpleChIP® Plus (#9004, #9005) Enzymatic Chromatin IP Kits. These kits provide all the reagents required for performing 6 chromatin preparations (or optimizations) and 30 chromatin immunoprecipitation (ChIP) assays, however there are instances where extra micrococcal nuclease is desired.
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Epithelial cell adhesion and activating molecule (EpCAM/CD326) is a transmembrane glycoprotein that mediates Ca2+-independent, homophilic adhesions on the basolateral surface of most epithelial cells. EpCAM is not expressed in adult squamous epithelium, but it is highly expressed in adeno and squamous cell carcinomas (1). Research studies identified EpCAM as one of the first tumor-associated antigens, and it has long been a marker of epithelial and tumor tissue. Investigators have shown that EpCAM is highly expressed in cancer cells (reviewed in 2,3).