Buy Three, Get the Fourth Free! | Start Saving >>

Product listing: TRAP1/HSP75 (D3D7N) Rabbit mAb, UniProt ID Q12931 #92345 to ALK (C26G7) Rabbit mAb, UniProt ID Q9UM73 #3333

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: TNF receptor-associated protein 1 (TRAP1), also known as HSP75, is a mitochondrial chaperone and ATPase that was originally identified as a protein that interacts with the TNF receptor. Although a member of the HSP90 family, TRAP1 is not heat-inducible but is upregulated by glucose deprivation, oxidative injury, and UV irradiation. An amino-terminal mitochondrial localization sequence results in localization of TRAP1 within mitochondria (1). Overexpression of TRAP1 decreases oxidative stress, suggesting a protective role in ischemia injury (2). Research studies demonstrate that silencing of TRAP1 enhances cytochrome C release and apoptosis, with additional evidence indicating that TRAP1 can protect cells from cell death by inhibiting the generation of reactive oxygen species (3). TRAP1 is a substrate of the mitochondrial serine/threonine kinase PINK1, whose corresponding gene is mutated in some forms of early-onset Parkinson's disease (PD). PINK1 protects cells from oxidative stress-induced cell death by suppressing release of cytochrome C from mitochondria. PD-linked PINK1 mutations impair the ability of PINK1 to phosphorylate TRAP1 and leads to impaired cell survival (4). Finally, TRAP1 alleviates α-synuclein induced toxicity and rescues the PINK1 loss-of-function phenotype (5).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Cancer/testis antigens (CTAs) are a family of more than 100 proteins whose normal expression is largely restricted to immune privileged germ cells of the testis, ovary, and trophoblast cells of the placenta. Although most normal somatic tissues are void of CTA expression, due to epigenetic silencing of gene expression, their expression is upregulated in a wide variety of human solid and liquid tumors (1,2). As such, CTAs have garnered much attention as attractive targets for a variety of immunotherapy-based approaches to selectively attack tumors (3).

PTMScan® Technology employs a proprietary methodology from Cell Signaling Technology (CST) for peptide enrichment by immunoprecipitation using a specific bead-conjugated antibody in conjunction with liquid chromatography (LC) tandem mass spectrometry (MS/MS) for quantitative profiling of post-translational modification (PTM) sites in cellular proteins. These include phosphorylation (PhosphoScan®), ubiquitination (UbiScan®), acetylation (AcetylScan®), and methylation (MethylScan®), among others. PTMScan® Technology enables researchers to isolate, identify, and quantitate large numbers of post-translationally modified cellular peptides with a high degree of specificity and sensitivity, providing a global overview of PTMs in cell and tissue samples without preconceived biases about where these modified sites occur (1). For more information on PTMScan® Proteomics Services, please visit www.cellsignal.com/common/content/content.jsp?id=ptmscan-services.
$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: CD31 (Platelet Endothelial Cell Adhesion Molecule-1: PECAM-1), a member of the Ig superfamily of cell adhesion molecules, is expressed by circulating platelets, monocytes, neutrophils, some T cells, and endothelial cells and modulates cell adhesion, endothelial cell migration, and angiogenesis (1). CD31 is phosphorylated on Tyr686 at the cytoplasmic carboxy-terminal tail upon various stimuli (e.g. mechanical or oxidative stress), presumably by Src family members (2). The tyrosine phosphorylation mediates associations with a number of SH2 domain-containing binding partners such as PI3 kinase, SHIP, PLCγ, and SHP-2. Thus, CD31 serves as a scaffold for various signaling molecules (3).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: The cytoskeleton consists of three types of cytosolic fibers: microfilaments (actin filaments), intermediate filaments, and microtubules. Major types of intermediate filaments are distinguished by their cell-specific expression: cytokeratins (epithelial cells), glial fibrillary acidic protein (GFAP) (glial cells), desmin (skeletal, visceral, and certain vascular smooth muscle cells), vimentin (mesenchyme origin), and neurofilaments (neurons). GFAP and vimentin form intermediate filaments in astroglial cells and modulate their motility and shape (1). In particular, vimentin filaments are present at early developmental stages, while GFAP filaments are characteristic of differentiated and mature brain astrocytes. Thus, GFAP is commonly used as a marker for intracranial and intraspinal tumors arising from astrocytes (2). Research studies have shown that vimentin is present in sarcomas, but not carcinomas, and its expression is examined in conjunction with that of other markers to distinguish between the two (3). Vimentin's dynamic structural changes and spatial re-organization in response to extracellular stimuli help to coordinate various signaling pathways (4). Phosphorylation of vimentin at Ser56 in smooth muscle cells regulates the structural arrangement of vimentin filaments in response to serotonin (5,6). Remodeling of vimentin and other intermediate filaments is important during lymphocyte adhesion and migration through the endothelium (7).During mitosis, CDK1 phosphorylates vimentin at Ser56. This phosphorylation provides a PLK binding site for vimentin-PLK interaction. PLK further phosphorylates vimentin at Ser82, which might serve as memory phosphorylation site and play a regulatory role in vimentin filament disassembly (8,9). Additionally, studies using various soft-tissue sarcoma cells have shown that phosphorylation of vimentin at Ser39 by Akt1 enhances cell migration and survival, suggesting that vimentin could be a potential target for soft-tissue sarcoma targeted therapy (10,11).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: LIM-containing lipoma-preferred partner (LPP) belongs to the zyxin family, members of which include LIMD1, ajuba, trip6 and zyxin. Three LIM domains at the carboxy-terminus characterize this family of proteins. Zyxin family members associate with the actin cytoskeleton and are components of both the cell-cell junction adhesive complex and the integrin-mediated adhesive complex (1). They shuttle in and out of the nucleus where they may function in transcriptional activation (1).LPP binding partners at cell-cell contacts include the actin regulator α-actinin (2) and the human tumor suppressor scrib which regulates cell migration and polarity (3).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Ribonucleotide reductase catalyzes the rate-limiting step in the synthesis of deoxynucleotide triphosphates (dNTPs). The regulatory M1 subunit (RRM1) is present throughout the cell division cycle, but downregulated in quiescent cells (1). Research studies have demonstrated that RRM1 is involved in carcinogenesis and tumor progression, and its expression is correlated with resistance to chemotherapy in non-small cell lung cancer (2-4).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The initiation of DNA replication in mammalian cells is a highly coordinated process that ensures duplication of the genome only once per cell division cycle. Origins of replication are dispersed throughout the genome, and their activities are regulated via the sequential binding of prereplication and replication factors. The origin recognition complex (ORC) is thought to be bound to chromatin throughout the cell cycle (1,2). The prereplication complex (Pre-RC) forms in late mitosis/early G1 phase beginning with the binding of CDT1 and cdc6 to the origin, which allows binding of the heterohexameric MCM2-7 complex. The MCM complex is thought to be the replicative helicase, and formation of the pre-RC is referred to as chromatin licensing. Subsequent initiation of DNA replication requires the activation of the S-phase promoting kinases CDK2 and cdc7. Cdc7, which is active only in complex with its regulatory subunit dbf4, phosphorylates MCM proteins bound to chromatin and allows binding of the replication factor cdc45 and DNA polymerase (3,4).Binding of CDT1 to geminin prevents pre-RC formation, and expression and degradation of geminin serve to regulate CDT1 activity (reviewed in 5). The interaction of CDT1 with MCM proteins is important in pre-RC formation and licensing (6,7). Both cdc6 and CDT1 are degraded by the ubiquitin proteasome pathway in response to DNA damage associated with rereplication (8).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Cathepsin B (CSTB), part of the papain family of proteases, is a widely expressed lysosomal cysteine endopeptidase (1,2). Cathepsin B is produced from a larger precursor form, pro-cathepsin B, which runs at approximately 44 kDa on SDS-PAGE, and is proteolytically processed and glycosylated to form a mature two-chain protein containing a heavy chain (running at 27 and 24 kDa) and a light chain (5 kDa). High levels of cathepsin B are found in macrophages and osteoclasts, as well as various types of cancer cells, including lung, colon, prostate, breast, and stomach. In addition, expression of cathepsin B has been associated with multiple sclerosis (3), rheumatoid arthritis (4), and pancreatitis (5). While generally localized to lysosomes, in cancer alterations can lead to its secretion (6). Its role in tumor progression is thought to involve promotion of basement membrane degradation, invasion and metastasis (7,8). Expression can correlate with poor prognosis for a variety of forms of cancer (9-13).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Na+/H+ exchanger regulatory factor (NHERF1 or EBP-50) is one of several related PDZ domain-containing proteins (1). NHERF1 was first identified as a necessary cofactor for cyclic AMP-associated inhibition of Na+/ H+ exchanger isoform 3 (NHE3) (2). NHERF1 is a multifunctional adaptor protein that interacts with receptors and ion transporters via its PDZ domains, and with the ERM family of proteins, including merlin, via its carboxy-terminus (2,3). NHERF1 may play an important role in breast cancer. Estrogen has been found to induce NHERF1 in estrogen receptor-positive breast cancer cells (2,3). Furthermore, NHERF1 has been shown to bind to PDGFR, which is activated in breast carcinomas. NHERF1 has been found to promote the formation of a ternary complex containing PTEN, NHERF1, and PDGFR. Therefore, NHERF1 may function to recruit PTEN to PDGFR to inhibit the activation of PI3K/Akt signaling in normal cells; this mechanism may be disrupted in cancer (4). NHERF1 also binds to the cystic fibrosis transmembrane conductance regulator (CFTR), which functions as an ion channel and has disease-causing mutations in cystic fibrosis (5). Other proposed functions of NHERF1 include testicular differentiation, endosomal recycling, membrane targeting, protein sorting, and trafficking (6).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Protein arginine N-methyltransferase 1 (PRMT1) is a member of the protein arginine N-methyltransferase (PRMT) family of proteins that catalyze the transfer of a methyl group from S-adenosylmethionine (AdoMet) to a guanidine nitrogen of arginine (1). Though all PRMT proteins catalyze the formation of mono-methyl arginine, Type I PRMTs (PRMT1, 3, 4, and 6) add an additional methyl group to produce an asymmetric di-methyl arginine while Type II PRMTs (PRMT 5 and 7) produce symmetric di-methyl arginine (1). Mono-methyl arginine, but not di-methyl arginine, can be converted to citrulline through deimination catalyzed by enzymes such as PADI4 (2). Most PRMTs, including PRMT1, methylate arginine residues found within glycine-arginine rich (GAR) protein domains, such as RGG, RG, and RXR repeats (1). However, PRMT4/CARM1 and PRMT5 methylate arginine residues within PGM (proline-, glycine-, methionine-rich) motifs (3). PRMT1 methylates Arg3 of histone H4 and cooperates synergistically with p300/CBP to enhance transcriptional activation by nuclear receptor proteins (4-6). In addition, PRMT1 methylates many non-histone proteins, including the orphan nuclear receptor HNF4 (6), components of the heterogeneous nuclear ribonucleoprotein (hnRNP) particle (7), the RNA binding protein Sam68 (8), interleukin enhancer-binding factor 3 (ILF3) (9) and interferon-α and β receptors (10). These interactions suggest additional functions in transcriptional regulation, mRNA processing and signal transduction. Alternative mRNA splicing produces three enzymatically active PRMT1 isoforms that differ in their amino-terminal regions (11). PRMT1 is localized to the nucleus or cytoplasm, depending on cell type (12,13), and appears in many distinct protein complexes. ILF3, TIS21 and the leukemia-associated BTG1 proteins bind PRMT1 to regulate its methyltransferase activity (9,14).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The family of Trk receptor tyrosine kinases consists of TrkA, TrkB, and TrkC. While the sequence of these family members is highly conserved, they are activated by different neurotrophins: TrkA by NGF, TrkB by BDNF or NT4, and TrkC by NT3 (1). Neurotrophin signaling through these receptors regulates a number of physiological processes, such as cell survival, proliferation, neural development, and axon and dendrite growth and patterning (1). In the adult nervous system, the Trk receptors regulate synaptic strength and plasticity. TrkA regulates proliferation and is important for development and maturation of the nervous system (2). Phosphorylation at Tyr490 is required for Shc association and activation of the Ras-MAP kinase cascade (3,4). Residues Tyr674/675 lie within the catalytic domain, and phosphorylation at these sites reflects TrkA kinase activity (3-6). Point mutations, deletions, and chromosomal rearrangements (chimeras) cause ligand-independent receptor dimerization and activation of TrkA (7-10). TrkA is activated in many malignancies including breast, ovarian, prostate, and thyroid carcinomas (8-13). Research studies suggest that expression of TrkA in neuroblastomas may be a good prognostic marker as TrkA signals growth arrest and differentiation of cells originating from the neural crest (10).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Cathepsin B (CSTB), part of the papain family of proteases, is a widely expressed lysosomal cysteine endopeptidase (1,2). Cathepsin B is produced from a larger precursor form, pro-cathepsin B, which runs at approximately 44 kDa on SDS-PAGE, and is proteolytically processed and glycosylated to form a mature two-chain protein containing a heavy chain (running at 27 and 24 kDa) and a light chain (5 kDa). High levels of cathepsin B are found in macrophages and osteoclasts, as well as various types of cancer cells, including lung, colon, prostate, breast, and stomach. In addition, expression of cathepsin B has been associated with multiple sclerosis (3), rheumatoid arthritis (4), and pancreatitis (5). While generally localized to lysosomes, in cancer alterations can lead to its secretion (6). Its role in tumor progression is thought to involve promotion of basement membrane degradation, invasion and metastasis (7,8). Expression can correlate with poor prognosis for a variety of forms of cancer (9-13).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Erk5 (Mitogen-activated protein kinase 7, Big mitogen-activated protein kinase 1) is a member of the MAPK superfamily implicated in the regulation numerous cellular processes including proliferation, differentiation, and survival (1-4). Like other MAPK family members, Erk5 contains a canonical activation loop TEY motif (Thr218/Tyr220) that is specifically phosphorylated by MAP2K5 (MEK5) in a growth-factor-dependent, Ras-independent mechanism (5-7). For example, EGF stimulation promotes Erk5 phosphorylation that induces its translocation to the nucleus where it phosphorylates MEF2C and other transcriptional targets (5,6). Erk5 is also activated in response to granulocyte colony-stimulating factor (G-CSF) in hematopoietic progenitor cells where it promotes survival and proliferation (7). In neuronal cells, Erk5 is required for NGF-induced neurite outgrowth, neuronal homeostasis, and survival (8,9). Erk5 is thought to play a role in blood vessel integrity via maintenance of endothelial cell migration and barrier function (10-12). Although broadly expressed, research studies have shown that mice lacking erk5 display numerous cardiac defects, suggesting Erk5 plays a critical role in vascular development and homeostasis (1,2).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Glutathione S-transferases (GSTs) are a family of isoenzymes that detoxify electrophiles through conjugation to thiol-reduced glutathione (GSH). Thus, they are critical in protecting cells from toxins (drugs, pesticides, carcinogens) and oxidative stress (1). Eight isoforms of cytosolic-soluble GSTs (α, κ, μ, π, σ, θ, ζ, and ω) are identified, while only GST-α, -μ, and -π are described in the central nervous system (2). GSTP1 (GSTπ) is overexpressed in early stages of carcinogenesis and can be used as a neoplastic marker in tumor tissues (3). GSTP1 directly inhibits TRAF2 and JNK but not NF-κB (4,5). Corresponding GSTP1 gene polymorphisms affect substrate selectivity and stability, and the oxidative milieu in dopaminergic neurons, which increases the susceptibility to Parkinson’s disease (6).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Western Blotting

Background: The Ca2+/calmodulin-dependent kinase (CaMK) family, which is activated in response to elevation of intracellular Ca2+, includes CaMKI, CaMKII, CaMKIV and CaMK-kinases (CaMKKs) (1,2). CaMKI is a downstream substrate of CaMKK and has 4 isoforms: CaMKI-α, CaMKI-β, CaMKI-γ and CaMKI-δ. CaMKI is present in most cell types and may be involved in cellular functions including transcription, cytoskeletal organization, axonal growth cone motility and long-term potentiation in neurons (3-6). CaMKII is also ubiquitously expressed in most cell types. While muscular CaMKII has been linked to activation of mitochondrial biogenesis in muscle hypertrophy response, neuronal CaMKII regulates important neuronal functions, including neurotransmitter synthesis, neurotransmitter release, modulation of ion channel activity, cellular transport, cell morphology and neurite extension, synaptic plasticity, learning and memory and gene expression (7). Like CaMKI, CaMKIV is also a substrate of CaMKKs and is primarily restricted to the nucleus of neurons. CaMKIV regulates gene transcription in neurons through phosphorylation of transcription factors such as CREB and is required for fear memory (8).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: CaMKII is an important member of the calcium/calmodulin-activated protein kinase family, functioning in neural synaptic stimulation and T cell receptor signaling (1,2). CaMKII has catalytic and regulatory domains. Ca2+/calmodulin binding to the CaMKII regulatory domain relieves autoinhibition and activates the kinase (3). The activated CaMKII further autophosphorylates at Thr286 to render the kinase constitutively active (3). The threonine phosphorylation state of CaMKII can be regulated through PP1/PKA. PP1 (protein phosphatase 1) dephosphorylates phospho-CaMKII at Thr286. PKA (protein kinase A) prevents phospho-CaMKII (Thr286) dephosphorylation through an inhibitory effect on PP1 (4).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The mTORC1 kinase complex is a critical regulator of cell growth (1,2). Its activity is modulated by energy levels, growth factors, and amino acids via signaling through Akt, MAPK, and AMPK pathways (3,4). Recent studies found that the four related GTPases, RagA, RagB, RagC, and RagD, interact with raptor within the mTORC1 complex (1,2). These interactions are both necessary and sufficient for mTORC1 activation in response to amino acid signals (1,2).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: CaMKII is an important member of the calcium/calmodulin-activated protein kinase family, functioning in neural synaptic stimulation and T cell receptor signaling (1,2). CaMKII has catalytic and regulatory domains. Ca2+/calmodulin binding to the CaMKII regulatory domain relieves autoinhibition and activates the kinase (3). The activated CaMKII further autophosphorylates at Thr286 to render the kinase constitutively active (3). The threonine phosphorylation state of CaMKII can be regulated through PP1/PKA. PP1 (protein phosphatase 1) dephosphorylates phospho-CaMKII at Thr286. PKA (protein kinase A) prevents phospho-CaMKII (Thr286) dephosphorylation through an inhibitory effect on PP1 (4).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunohistochemistry (Paraffin), Western Blotting

Background: Calcyclin-binding protein or Siah-1-interacting protein (CACYBP/SIP) is a component of the ubiquitin E3 ligase complex that also contains Siah1, Skp1, and Ebi (1). CACYBP regulates β-catenin turnover and plays an important role in thymocyte development (2). CACYBP also binds to tubulin and may be involved in cytoskeletal regulation (3,4). It is highly expressed in neurons, and its cellular localization may be regulated by Ca2+ (5,6). Retinoic acid treatment of the neuroblastoma cell line SH-SY5Y induces translocation of CACYBP to the nucleus and seems to be correlated with phosphorylation of CACYBP on serine residues (7). Recent studies also suggest that CACYBP may possess phosphatase activity (8), and that it can bind and dephosphorylate Erk1/2 (8,9).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: ApoAI (Apolipoprotein A1) is a major component of high density lipoprotein (HDL, the “good cholesterol”) in plasma. It is produced in the liver and small intestine. ApoA1 is a cofactor for lecithin cholesterolacyltransferase (LCAT) that is responsible for the formation of plasma cholesteryl esters and promotes cholesterol efflux from tissues to the liver for excretion. Defects in ApoA1 are associated with high density lipoprotein deficiency (HDLD) and systemic non-neuropathic amyloidosis (1-3).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: SGTA, small glutamine-rich tetratricopeptide repeat-containing protein A, is an ubiquitously expressed co-chaperone that binds directly to HSC70 and HSP70 and regulates their ATPase activity (1,2). SGTA is a 34 kDa protein that is rich in glutamine residues at its C terminus and contains three tandemly repeated TPR motifs (3). The TPR domain of SGTA shows sequence similarity to the TPR domains of Hop, CHIP, and TOM70 (4). The TPR domain of SGTA also interacts with HSP90 and was recently found to be a pro-apoptotic factor (5,6).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Western Blotting

Background: Synaptotagmin 1 (SYT1) is an integral membrane protein found in synaptic vesicles thought to play a role in vesicle trafficking and exocytosis (1). Individual SYT1 proteins are composed of an amino-terminal transmembrane region, a central linker region and a pair of carboxy-terminal C2 domains responsible for binding Ca2+ (2). The C2 domains appear to be functionally distinct, with the C2A domain responsible for regulating synaptic vesicle fusion in a calcium-dependent manner during exocytosis while the C2B domain allows for interaction between adjacent SYT1 proteins (3). Because synaptotagmin 1 binds calcium and is found in synaptic vesicles, this integral membrane protein is thought to act as a calcium sensor in fast synaptic vesicle exocytosis. Evidence suggests possible roles in vesicle-mediated endocytosis and glucose-induced insulin secretion as well (4,5). SYT1 binds several different SNARE proteins during calcium-mediated vesicle endocytosis and an association between SYT1 and the SNARE protein SNAP-25 is thought to be a key element in vesicle-mediated exocytosis (6).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: SAPK/Erk kinase (SEK1), also known as MKK4 or Jun kinase kinase (JNKK), activates the MAP kinase homologues SAPK and JNK in response to various cellular stresses and inflammatory cytokines (1-3). Activation of SEK1 occurs through MEKK phosphorylation of serine and threonine residues at positions 257 and 261, respectively. Like MEK, SEK is a dual-specificity protein kinase that phosphorylates SAPK/JNK at a conserved T*PY* site in its activation loop (4). Phosphorylation by Akt at Ser80 inhibits SEK1 and suppresses stress-activated signal transduction (5).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: The NDK/NME/NM23 kinase family (encoded by the NME gene family) consists of at least eight distinct proteins that exhibit different cellular localization (1). Members of this group inhibit metastasis in a variety of tumor cell types (2). All NDK/NME/NM23 proteins possess nucleoside diphosphatase kinase (NDK) activity and catalyze the phosphorylation of nucleoside diphosphate to the corresponding nucleoside triphosphate to regulate a diverse array of cellular events (3). At least four classes of NDK biochemical activities have been described, including protein-protein interactions (4-6), regulation of GTP-binding protein function (7-9), DNA-associated activities (10,11), and histidine-dependent protein phosphotransferase activity (12). NDK/NME proteins participate in the regulation of a broad spectrum of cellular responses, including development, differentiation, proliferation, endocytosis, and apoptosis (13). Because of its role in metastasis suppression and oncogenesis, NDKA (NME1/NM23-H1) has been widely studied (14). NDKA (NM23-H1) and NDKB (NM23-H2) are encoded by adjacent NME1 and NME2 genes and share 90% sequence identity. Two serine residues (Ser122 and Ser144) on NDKA/NM23-H1 can be phosphorylated by AMPKα1, but only phosphorylation at Ser122 determines whether NDKA channels ATP to AMPKα1. This regulates AMPKα1 activity towards ACC1, an important regulator of fatty acid metabolism (15). Mutation of NDKB/NM23-H2 at Ser122 (S122P) in melanoma cells results in altered phosphoryl transfer activity (16).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The NDK/NME/NM23 kinase family (encoded by the NME gene family) consists of at least eight distinct proteins that exhibit different cellular localization (1). Members of this group inhibit metastasis in a variety of tumor cell types (2). All NDK/NME/NM23 proteins possess nucleoside diphosphatase kinase (NDK) activity and catalyze the phosphorylation of nucleoside diphosphate to the corresponding nucleoside triphosphate to regulate a diverse array of cellular events (3). At least four classes of NDK biochemical activities have been described, including protein-protein interactions (4-6), regulation of GTP-binding protein function (7-9), DNA-associated activities (10,11), and histidine-dependent protein phosphotransferase activity (12). NDK/NME proteins participate in the regulation of a broad spectrum of cellular responses, including development, differentiation, proliferation, endocytosis, and apoptosis (13). Because of its role in metastasis suppression and oncogenesis, NDKA (NME1/NM23-H1) has been widely studied (14). NDKA (NM23-H1) and NDKB (NM23-H2) are encoded by adjacent NME1 and NME2 genes and share 90% sequence identity. Two serine residues (Ser122 and Ser144) on NDKA/NM23-H1 can be phosphorylated by AMPKα1, but only phosphorylation at Ser122 determines whether NDKA channels ATP to AMPKα1. This regulates AMPKα1 activity towards ACC1, an important regulator of fatty acid metabolism (15). Mutation of NDKB/NM23-H2 at Ser122 (S122P) in melanoma cells results in altered phosphoryl transfer activity (16).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: S5a (PSMD4) is a subunit of the 19S regulatory proteasome complex functioning in ubiquitinated-protein targeting and degradation (1). S5a contains two polyubiquitin binding motifs (UIM) that bind multiubiquitin chains by hydrophobic interaction (2,3). In addition to ubiquitin, the UIM of S5a shows high affinity to a ubiquitin-like domain present in many proteins. S5a binds to these types of proteins directly and mediates their targeting to the proteasome for degradation (4,5).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Apolipoproteins are plasma lipoproteins that function as transporters of lipids and cholesterol in the circulatory system. Chylomicrons are a fundamental class of apolipoproteins containing very low-density lipoproteins (VLDL), intermediate-density lipoproteins (IDL), low-density lipoproteins (LDL), and high-density lipoproteins (HDL) (1,2).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Lymphocyte activation occurs in part through activation of the Ras signaling pathway following lymphocyte receptor stimulation. The RasGRP family of guanine nucleotide exchange factors (GEFs) catalyzes the exchange of GDP for GTP on Ras family small GTPases, promoting their active GTP-bound form. Diacylglycerol (DAG) or phorbol ester binding to RasGRP family members causes their translocation to the cell membrane and stimulates their activity (1,2). While T-Cells express RasGRP1, B-cells express both RasGRP1 and RasGRP3. RasGRP3 is important in linking B-cell receptor (BCR) activation to Ras signaling (3). In response to BCR stimulation, RasGRP3 is phosphorylated at Thr133 by PKC. This phosphorylation event further activates RasGRP3 in response to DAG, which stimulates PKC activity (4,5).

$255
10 western blots
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor for pleiotrophin (PTN), a growth factor involved in embryonic brain development (1-3). In ALK-expressing cells, PTN induces phosphorylation of both ALK and the downstream effectors IRS-1, Shc, PLCγ, and PI3 kinase (1). ALK was originally discovered as a nucleophosmin (NPM)-ALK fusion protein produced by a translocation (4). Investigators have found that the NPM-ALK fusion protein is a constitutively active, oncogenic tyrosine kinase associated with anaplastic lymphoma (4). Research literature suggests that activation of PLCγ by NPM-ALK may be a crucial step for its mitogenic activity and involved in the pathogenesis of anaplastic lymphomas (5).A distinct ALK oncogenic fusion protein involving ALK and echinoderm microtubule-associated protein like 4 (EML4) has been described in the research literature from a non-small cell lung cancer (NSCLC) cell line, with corresponding fusion transcripts present in some cases of lung adenocarcinoma. The short, amino-terminal region of the microtubule-associated protein EML4 is fused to the kinase domain of ALK (6-8).