Cool deals on CST mAbs | Learn More >>

Product listing: Pim-1 (C93F2) Rabbit mAb, UniProt ID P11309 #3247 to STING (D2P2F) Rabbit mAb, UniProt ID Q86WV6 #13647

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Pim proteins (Pim-1, Pim-2 and Pim-3) are oncogene-encoded serine/threonine kinases (1). Pim-1, a serine/threonine kinase highly expressed in hematopoietic cells, plays a critical role in the transduction of mitogenic signals and is rapidly induced by a variety of growth factors and cytokines (1-4). Pim-1 cooperates with c-Myc in lymphoid cell transformation and protects cells from growth factor withdrawal and genotoxic stress-induced apoptosis (5,6). Pim-1 also enhances the transcriptional activity of c-Myb through direct phosphorylation within the c-Myb DNA binding domain as well as phosphorylation of the transcriptional coactivator p100 (7,8). Hypermutations of the Pim-1 gene are found in B-cell diffuse large cell lymphomas (9). Phosphorylation of Pim-1 at Tyr218 by Etk occurs following IL-6 stimulation and correlates with an increase in Pim-1 activity (10). Various Pim substrates have been identified; Bad is phosphorylated by both Pim-1 and Pim-2 at Ser112 and this phosphorylation reverses Bad-induced cell apoptosis (11,12).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: PTEN induced putative kinase 1, PINK1, is a mitochondrial serine/threonine kinase involved in the normal function and integrity of mitochondria, as well as in reduction of cytochrome c release from mitochondria (1-3). PINK1 phosphorylates Parkin and promotes its translocation to mitochondria (2). Research studies have shown that mutations in PINK1 are linked to autosomal recessive early onset Parkinson’s disease, and are associated with loss of protective function, mitochondrial dysfunction, aggregation of α-synuclein, as well as proteasome dysfunction (1,3).

$303
100 µl
APPLICATIONS
REACTIVITY
All Species Expected, Human, Mouse, Rat

Application Methods: Western Blotting

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Cancer/testis antigens (CTAs) are a family of more than 100 proteins whose normal expression is largely restricted to immune privileged germ cells of the testis, ovary, and trophoblast cells of the placenta. Although most normal somatic tissues are void of CTA expression, due to epigenetic silencing of gene expression, their expression is upregulated in a wide variety of human solid and liquid tumors (1,2). As such, CTAs have garnered much attention as attractive targets for a variety of immunotherapy-based approaches to selectively attack tumors (3).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Prospero homeobox protein 1 (PROX1) is a transcription factor known for its roles in organ development and lymphangiogenesis. It plays a critical role in the development of the CNS, lens, retina, liver, pancreas, and heart, and is considered to be the master regulator of the lymphatic system (1,2). PROX1 initiates the differentiation of lymphatic vasculature from the cardinal vein, where it is regulated by Sox18 (3,4). The PROX1 suppressor COUP-TFII represses the Notch pathway in venous endothelium, which prevents arterialization (4). HIF-1α and HIF-1β mediated hypoxia induces PROX1, which suggests a means of promoting lymphangiogenesis. Since the tumor microenvironment is typically hypoxic, regulation of PROX1 by hypoxia may also explain the up-regulation of this transcription factor in some cancers (2). PROX1 promotes colon cancer progression by down-regulating E-cadherin via miR-9, which promotes epithelial-mesenchymal transition (EMT) and metastasis (5). The PROX1 protein can act as a tumor suppressor in cases of hepatocellular carcinoma. PROX1 represses transcription of TWIST1, a transcription factor that promotes metastasis by binding the E-cadherin promoter. The function of PROX1 in other cancers is an area of active research (6).

$111
20 µl
$260
100 µl
$637
300 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: PTEN (phosphatase and tensin homologue deleted on chromosome ten), also referred to as MMAC (mutated in multiple advanced cancers) phosphatase, is a tumor suppressor implicated in a wide variety of human cancers (1). PTEN encodes a 403 amino acid polypeptide originally described as a dual-specificity protein phosphatase (2). The main substrates of PTEN are inositol phospholipids generated by the activation of the phosphoinositide 3-kinase (PI3K) (3). PTEN is a major negative regulator of the PI3K/Akt signaling pathway (1,4,5). PTEN possesses a carboxy-terminal, noncatalytic regulatory domain with three phosphorylation sites (Ser380, Thr382, and Thr383) that regulate PTEN stability and may affect its biological activity (6,7). PTEN regulates p53 protein levels and activity (8) and is involved in G protein-coupled signaling during chemotaxis (9,10).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Rab11a, Rab11b and Rab25 are members of the Rab11 family of small Ras-like GTPases. Rab11 (isoforms Rab11a and Rab11b) functions as a key regulator in the recycling of perinuclear, plasma membrane and Golgi compartment endosomes (1,2). Despite some overlap, distinct differences exist between Rab11a and Rab11b in both their cellular distribution and functional roles. Rab11a is ubiquitously expressed while Rab11b is found mainly in the heart and brain (3,4). Like other Rab proteins, Rab11 exerts its function via interactions with Rab11 family interacting proteins (FIPs). While there are three distinct classes of FIPs, all appear to share a conserved carboxy-terminal Rab-binding domain that allows Rab-FIP protein interaction. When bound together, these proteins are thought to regulate membrane-associated protein sorting (5,6).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Rab7 and Rab9 are members of the Ras superfamily of small Rab GTPases (1). Both proteins are located in late endosomes, but exert different functions. Rab7 associates with the RIPL effector protein to control membrane trafficking from early to late endosome and to lysosomes (2,3). Rab7 also helps to regulate growth receptor endocytic trafficking and degradation (3,4), and maturation of phagosome and autophagic vacuoles (4-6). Rab9 interacts with its effector proteins p40 and TIP47 (7,8) to promote the MPR (mannose 6-phosphate receptor)-associated lysosomal enzyme transport between late endosomes and the trans Golgi network (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: DNA double-strand breaks (DSBs) are potentially hazardous lesions that can be induced by ionizing radiation (IR), radiomimetic chemicals, or DNA replication inhibitors. Cells sense and repair DSBs via two distinct but partly overlapping signaling pathways, nonhomologous end joining (NHEJ) and homologous recombination (HR). Research studies have shown that defects in both pathways are associated with human disease, including cancer (reviewed in 1).DSBs that arise during S or G2 phase are repaired via homologous recombination (HR), using the replicated sister chromatid as a repair template. Rad51 recombinase, a eukaryotic homologue of E. coli RecA, polymerizes and forms a filament along single-stranded DNA, mediating HR with the help of auxiliary proteins, including Rad54 and BRCA2 (reviewed in 2,3). BRCA2 binds Rad51 and targets it to single-stranded DNA, allowing it to displace replication protein A (RPA) (4). Five Rad51 paralogs exist in vertebrates (XRCC2, XRCC3, Rad51B, Rad51C, and Rad51D) and they all appear to be required for efficient HR (5).Researchers have found that mutations in the Rad51 gene may be related to breast cancer risk (6). Some studies have implicated Rad51 as a potential marker for pancreatic cancer (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Rhodopsin is the photoreceptor in the retinal rods. It is activated by photons, transduces visual information through its cognate G protein, transducin, and is inactivated by arrestin binding (1). Using atomic-force microscopy, rhodopsin was found to be arranged into paracrystalline arrays of dimers in mouse disc membranes (2). Rhodopsin is considered to be the prototype of G protein-coupled receptors (GPCRs), and is the first GPCR for which a crystal structure was solved (3). Research studies have linked mutations in the gene encoding rhodopsin to retinitis pigmentosa (4,5), a disease characterized by retinal degeneration resulting in reduced peripheral vision and night blindness (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Rho family small GTPases act as molecular switches that regulate processes such as cell migration, adhesion, proliferation and differentiation. Typically, they are activated by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of bound GDP for GTP, and are inhibited by GTPase activating proteins (GAPs), which catalyze the hydrolysis of GTP to GDP (1). Rnd1, Rnd2 and RhoE/Rnd3 comprise the evolutionarily divergent Rnd family of Rho-type small GTPases, which lack GTPase activity and therefore remain in a GTP-bound state (2, reviewed in 3). RhoE/Rnd3 activity leads to a decrease in stress fibers and increased cell migration, at least in part through regulation of the Rho-dependent kinase ROCK1 (4). Activity of RhoE/Rnd3 itself is regulated by ROCK1, which phosphorylates RhoE/Rnd3 at Ser11, enhancing its activity (5). RhoE/Rnd3 has been implicated in inhibition of DNA-damage induced apoptosis (6) and cell cycle arrest (7). In keratinocytes, RhoE/Rnd3 regulates differentiation through its effects on both proliferation and adhesion (8).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated RIP (D94C12) XP® Rabbit mAb #3493.
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The receptor-interacting protein (RIP) family of serine-threonine kinases (RIP, RIP2, RIP3, and RIP4) are important regulators of cellular stress that trigger pro-survival and inflammatory responses through the activation of NF-κB, as well as pro-apoptotic pathways (1). In addition to the kinase domain, RIP contains a death domain responsible for interaction with the death domain receptor Fas and recruitment to TNF-R1 through interaction with TRADD (2,3). RIP-deficient cells show a failure in TNF-mediated NF-κB activation, making the cells more sensitive to apoptosis (4,5). RIP also interacts with TNF-receptor-associated factors (TRAFs) and can recruit IKKs to the TNF-R1 signaling complex via interaction with NEMO, leading to IκB phosphorylation and degradation (6,7). Overexpression of RIP induces both NF-κB activation and apoptosis (2,3). Caspase-8-dependent cleavage of the RIP death domain can trigger the apoptotic activity of RIP (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The receptor-interacting protein (RIP) family of serine-threonine kinases (RIP, RIP2, RIP3, and RIP4) are important regulators of cellular stress that trigger pro-survival and inflammatory responses through the activation of NF-κB, as well as pro-apoptotic pathways (1). In addition to the kinase domain, RIP contains a death domain responsible for interaction with the death domain receptor Fas and recruitment to TNF-R1 through interaction with TRADD (2,3). RIP-deficient cells show a failure in TNF-mediated NF-κB activation, making the cells more sensitive to apoptosis (4,5). RIP also interacts with TNF-receptor-associated factors (TRAFs) and can recruit IKKs to the TNF-R1 signaling complex via interaction with NEMO, leading to IκB phosphorylation and degradation (6,7). Overexpression of RIP induces both NF-κB activation and apoptosis (2,3). Caspase-8-dependent cleavage of the RIP death domain can trigger the apoptotic activity of RIP (8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: ROCK (Rho-associated kinase), a family of serine/threonine kinases, is an important downstream target of Rho-GTPase and plays an important role in Rho-mediated signaling. Two isoforms of ROCK have been identified: ROCK1 and ROCK2. ROCK is composed of N-terminal catalytic, coiled-coil, and C-terminal PH (pleckstrin homology) domains. The C-terminus of ROCK negatively regulates its kinase activity (1,2). Caspase-3-induced cleavage of ROCK1 and direct cleavage of ROCK2 by granzyme B (grB) activates ROCK and leads to phosphorylation of myosin light chain and inhibition of myosin phosphatase (3). This phosphorylation may account for the mechanism by which Rho regulates cytokinesis, cell motility, cell membrane blebbing during apoptosis, and smooth muscle contraction (4-6).

$145
20 µl
$426
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: ROS1, an orphan receptor tyrosine kinase of the insulin receptor family, was initially identified as a homolog of v-ros from the UR2 sarcoma virus (1). ROS1 consists of a large extracellular domain that is composed of six fibronectin repeats, a transmembrane domain, and an intracellular kinase domain. While the function of ROS1 is undefined, it has been shown to play an important role in differentiation of epididymal epithelium (2). The first oncogenic fusion of ROS1, FIG-ROS1, was initially identified by research studies in glioblastoma (3), and subsequent studies have found this fusion in cholangiocarcinoma (4), ovarian cancer (5) and non-small cell lung cancer (NSCLC) (6). Investigators have found additional oncogenic ROS1 fusion proteins in NSCLC (at a frequency of ~1.6%), where the ROS1 kinase domain is fused to the amino-terminal region of a number of different proteins, including CD74 and SLC34A2 (6-8). ROS1 fusion proteins activate the SHP-2 phosphatase, PI3K/Akt/mTOR, Erk, and Stat3 pathways (3,4,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Western Blotting

Background: Ryanodine receptors (RyRs) are large (>500 kDa), intracellular calcium channels found in the sarcoplasmic/endoplasmic reticulum membrane and are responsible for the release of Ca2+ from intracellular stores in excitable cells, such as muscle and neurons. RyRs exist as three mammalian isoforms (RyR1-3), all of which form homotetramers regulated by phosphorylation and/or direct or indirect interaction with a variety of proteins (L-type calcium channels, PKA, FKBP12/12.6, CaMKII, calmodulin, calsequestrin, junctin, and triadin) and ions (Mg2+ and Ca2+). Regulation of the RyR channel by protein modulators occurs within the large cytoplasmic domain, whereas the carboxy-terminal portion of the protein forms the ion-binding and conducting pore (1,2). RyR1 and RyR2 are predominantly expressed in skeletal and cardiac muscle, respectively, where they localize exclusively to the sarcoplasmic reticulum (SR) and facilitate calcium-mediated communication between transverse-tubules and sarcoplasmic reticulum. Contraction of skeletal muscle is triggered by release of calcium ions from the SR following depolarization of T-tubules. Research studies have shown that defects in RyR1 are the cause of malignant hyperthermia susceptibility type 1 (MHS1), central core disease of muscle (CCD), multiminicore disease with external ophthalmoplegia, and congenital myopathy with fiber-type disproportion (CFTD), each of which is manifested by defects in muscle function, metabolism, and development (2). Investigators have shown that defects in RyR2 are the cause of familial arrhythmogenic right ventricular dysplasia type 2 (ARVD2) and catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1), both of which are implicated in sudden death syndromes as a result of electrical instability and degeneration of the ventricular myocardium or stress-induced ventricular tachycardia (2). Despite low levels of expression in skeletal and smooth muscle, RyR3 is the dominant isoform in neuronal cells (hippocampal neurons, thalamus, Purkinje cells) and has been implicated in synaptic plasticity, dendritic spine remodeling, and spatial memory formation (3). The role of RyR3 in neuronal function has been substantiated by mice lacking RyR3, which demonstrate normal motor function, but possess numerous behavioral and social defects (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Members of the Toll-like receptor (TLR) family, named for the closely related Toll receptor in Drosophila, play a pivotal role in innate immune responses (1-4). TLRs recognize conserved motifs found in various pathogens and mediate defense responses (5-7). Triggering of the TLR pathway leads to the activation of NF-κB and subsequent regulation of immune and inflammatory genes (4). The TLRs and members of the IL-1 receptor family share a conserved stretch of approximately 200 amino acids known as the Toll/Interleukin-1 receptor (TIR) domain (1). Upon activation, TLRs associate with a number of cytoplasmic adaptor proteins containing TIR domains, including myeloid differentiation factor 88 (MyD88), MyD88-adaptor-like/TIR-associated protein (MAL/TIRAP), Toll-receptor-associated activator of interferon (TRIF), and Toll-receptor-associated molecule (TRAM) (8-10). This association leads to the recruitment and activation of IRAK1 and IRAK4, which form a complex with TRAF6 to activate TAK1 and IKK (8,11-14). Activation of IKK leads to the degradation of IκB, which normally maintains NF-κB in an inactive state by sequestering it in the cytoplasm.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin)

Background: The stromal cell derived factor 1 (SDF1/CXCL12) is a small, pro-inflammatory chemoattractant cytokine that regulates leukocyte trafficking through interactions with its cognate 7-transmembrane G protein-coupled receptors (1). The SDF1/CXCL12 receptor, CXCR4, also serves as a coreceptor for the entry of human immunodeficiency virus into target cells (2). SDF1/CXCL12 may regulate homing and maintenance of CXCR4-expressing stem or progenitor cells, including embryonic and many somatic stem cells (3,4). Many cancer cells express CXCR4, suggesting that SDF1/CXCL12 plays a role in cancer metastasis (5,6). Alternative splicing and differential processing during maturation produce a pair of SDF1/CXCL12 isoforms (SDF1/CXCL12α and SDF1/CXCL12β) that have different properties and biological activities (7). Additional isoforms of SDF1/CXCL12 have been reported (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Serine racemase, also called SRR, is an enzyme that is highly expressed in the brain and converts L-serine to D-serine (1,2). D-serine is a co-agonist of the NMDA receptor. NMDA receptor activation requires the binding of glutamate to its GluN2 subunit and the concomitant binding of either glycine or D-serine to its glycine binding site on the GluN1 subunit (3). Decreased activation of NMDA receptors is a typical feature of impaired synaptic plasticity in age-related memory deficits. Therefore, D-serine availability makes serine racemase an important therapeutic target for memory deficit associated with nonpathological aging (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: SHP-1 (PTPN6) is a non-receptor protein tyrosine phosphatase that is expressed primarily in hematopoietic cells. The enzyme is composed of two SH2 domains, a tyrosine phosphatase catalytic domain, and a carboxy-terminal regulatory domain (1). SHP-1 removes phosphates from target proteins to downregulate several tyrosine kinase-regulated pathways. In hematopoietic cells, the amino-terminal SH2 domain of SHP-1 binds to tyrosine phosphorylated erythropoietin receptors (EpoR) to negatively regulate hematopoietic growth (2). Overexpression of SHP-1 in epithelial cells results in dephosphorylation of the Ros receptor tyrosine kinase and subsequent downregulation of Ros-dependent cell proliferation and transformation (3). Following ligand binding in myeloid cells, SHP-1 associates with the IL-3R β chain and downregulates IL-3-induced tyrosine phosphorylation and cell proliferation (4). Because SHP-1 downregulates various proliferation pathways, SHP-1 is considered a potential tumor suppressor and angiogenesis regulator (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: SHP-substrate 1 (SHPS1, SIRPα) is a single-pass membrane protein and member of both the immunoglobulin superfamily and the signal regulatory protein (SIRP) family. Following growth hormone stimulation or integrin binding, SHPS1 is phosphorylated at several tyrosine residues within its cytoplasmic tail. These phosphorylation events promote association between SHPS1 and multiple signaling proteins, including SHP-1, SHP-2, Grb2 and Shc via their SH2 domains (1-4). Recruitment of SHP-1 and SHP-2 results in SHPS1 dephosphorylation and suppression of tyrosine kinase signaling (1-3,5). The tyrosine kinase JAK2 associates with SHPS1 via its carboxy terminus and phosphorylates SHPS1 in response to extracellular stimuli (5). Research studies show that Src associates with and may phosphorylate SHPS1 in response to insulin (4). In macrophages, SHPS1 can form a complex with the Src pathway adaptor protein SKAP2, Fyn-binding protein FYB, and the tyrosine kinase PYK2 (6). The SHPS1 extracellular domain contains at least three IgG-like domains that interact with CD47, a ubiquitously expressed, integrin-associated protein that acts as a repressive cue in both immune and neuronal cells (7,8). The interaction between CD47 and SHPS1 on opposing cells can inhibit cellular migration (9), promote "tethering" between macrophages and target cells during engulfment (10), facilitate self versus non-self recognition (11), and maintain immune homeostasis (12). SHPS1 plays a critical role in modulating the immune response and inflammation, and may play a role in neuronal development (13,14). The interaction between SHPS1 and CD47 may be an exploitable target in cancer therapy (15-17).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Slug (SNAI2) is a widely expressed transcriptional repressor and member of the Snail family of zinc finger transcription factors (1). Similar to the related Snail protein, Slug binds to the E-cadherin promoter region to repress transcription during development (2). The binding of Slug to integrin promoter sequences represses integrin expression and results in reduced cell adhesion (3). Down regulation of E-cadherin expression occurs during the epithelial-mesenchymal transition during embryonic development, a process also exploited by invasive cancer cells (4,5). The tumor suppressor protein p53 induces Slug expression in γ-irradiated cells; Slug protects damaged cells from apoptosis by repressing p53-induced transcription of the proapoptotic Bcl-2 family protein Puma (6). Deletion mutations in the corresponding Slug gene are associated with the pigmentation disorders Waardenburg Syndrome and Piebaldism, while a genetic duplication resulting in Slug overexpression is associated with a collection of congenital heart defects termed tetralogy of Fallot (7).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Smac/Diablo (D5S3R) Rabbit mAb #15108.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: Smac/Diablo is a 21 kDa mammalian mitochondrial protein that functions as a regulatory component during apoptosis (1,2). Upon mitochondrial stress, Smac/Diablo is released from mitochondria and competes with caspases for binding of IAPs (inhibitor of apoptosis proteins) (1,2). The interaction of Smac/Diablo with IAPs relieves the inhibitory effect of the IAPs on caspases (3,4). This interaction involves mainly the amino-terminal residues of Smac/Diablo with the BIR3 region of XIAP, supplemented with several other hydrophobic interactions between the helical structures of Smac/Diablo and other areas of BIR3 (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: SMARCA1 (SNF2L) is one of the two orthologs of the ISWI (imitation switch) ATPases encoded by the mammalian genome (1). The ISWI chromatin remodeling complexes were first identified in Drosophila and have been shown to remodel and alter nucleosome spacing in vitro (2). SMARCA1 is the catalytic subunit of the nucleosome remodeling factor (NURF) and CECR2-containing remodeling factor (CERF) complexes (3-5). The NURF complex plays an important role in neuronal physiology by promoting neurite outgrowth and regulation of Engrailed homeotic genes that are involved in neuronal development in the mid-hindbrain (3). NURF is also thought to be involved in the maturation of T cells from thymocytes by regulating chromatin structure and expression of genes important for T cell development (6). The largest subunit of the NURF complex, BPTF, is required for proper development of mesoderm, endoderm, and ectoderm tissue lineages, suggesting a role for SMARCA1 in the development of the germ layers in mouse embryo (7). Disruption of the CERF complex by deletion of CECR2, an interacting partner of SMARCA1, is associated with the neural tube defect exencephaly, linking the CERF complex with regulation of neurulation (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: SNAT1/SLC38A1 belongs to the system A transporters that mediate Na+-dependent transport of short-chain neutral amino acids such as alanine, serine, and glutamine. SNAT1/SLC38A1 mediates the uptake of glutamine in neurons and plays a crucial role in glutamate-glutamine cycle. Steep concentration gradients across the plasma membrane are achieved by coupling of the electrochemical sodium gradient to amino acid transport. This allows a unidirectional mode of transport for SNAT1/SLC38A1. Upregulation of SNAT1/SLC38A1 by neurotrophic factors is key to dendritic growth and branching of cortical neurons. High expression of SNAT1/SLC38A1 is found in cerebral cortex primarily in neurons and to a lesser extent in astrocytes (1-4). Elevated SNAT1/SLC38A1 expression is prominent in human solid tumors including gliomas, hepatocellular carcinomas and human breast cancer (5-8). Research studies show that an aberrant SNAT1/SLC38A1 expression profile correlates with solid tumor recurrence and poor prognosis in patients with cholangiocarcinoma (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Spinophilin is an 815 amino acid protein composed of a PDZ domain, 2 actin-binding domains, a receptor- and PP1-binding domain, three coiled-coiled domains, a potential leucine/isoleucine zipper motif, and three potential SH3 domains (1). Spinophilin interacts with a large number of proteins including ion channel components and G protein-coupled receptors (GPCRs). Spinophilin also interacts with actin filaments; phosphorylation of spinophilin at Ser94 and Ser177 disrupts this interaction (2). Spinophilin has been shown to affect GPCR function through two different mechanisms: spinophilin acts as a functional inhibitor of α-2 adrenergic receptor-mediated arrestin signaling by competing with GRK2 binding to the adrenergic receptor (3) and spinophilin facilitates μ-opioid receptor desensitization by promoting receptor endocytosis (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Sequestosome 1 (SQSTM1, p62) is a ubiquitin binding protein involved in cell signaling, oxidative stress, and autophagy (1-4). It was first identified as a protein that binds to the SH2 domain of p56Lck (5) and independently found to interact with PKCζ (6,7). SQSTM1 was subsequently found to interact with ubiquitin, providing a scaffold for several signaling proteins and triggering degradation of proteins through the proteasome or lysosome (8). Interaction between SQSTM1 and TRAF6 leads to the K63-linked polyubiquitination of TRAF6 and subsequent activation of the NF-κB pathway (9). Protein aggregates formed by SQSTM1 can be degraded by the autophagosome (4,10,11). SQSTM1 binds autophagosomal membrane protein LC3/Atg8, bringing SQSTM1-containing protein aggregates to the autophagosome (12). Lysosomal degradation of autophagosomes leads to a decrease in SQSTM1 levels during autophagy; conversely, autophagy inhibitors stabilize SQSTM1 levels. Studies have demonstrated a link between SQSTM1 and oxidative stress. SQSTM1 interacts with KEAP1, which is a cytoplasmic inhibitor of NRF2, a key transcription factor involved in cellular responses to oxidative stress (3). Thus, accumulation of SQSTM1 can lead to an increase in NRF2 activity.

$269
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The Stat3 transcription factor is an important signaling molecule for many cytokines and growth factor receptors (1) and is required for murine fetal development (2). Research studies have shown that Stat3 is constitutively activated in a number of human tumors (3,4) and possesses oncogenic potential (5) and anti-apoptotic activities (3). Stat3 is activated by phosphorylation at Tyr705, which induces dimerization, nuclear translocation, and DNA binding (6,7). Transcriptional activation seems to be regulated by phosphorylation at Ser727 through the MAPK or mTOR pathways (8,9). Stat3 isoform expression appears to reflect biological function as the relative expression levels of Stat3α (86 kDa) and Stat3β (79 kDa) depend on cell type, ligand exposure, or cell maturation stage (10). It is notable that Stat3β lacks the serine phosphorylation site within the carboxy-terminal transcriptional activation domain (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Stimulator of interferon genes (STING, TMEM173, MITA) is a transmembrane adaptor protein that is a critical component of the cellular innate immune response to pathogenic cytoplasmic DNA (1,2). STING is a ubiquitously expressed protein found predominantly in the ER (1). The enzyme cGAMP synthase (cGAS) produces the second messenger cyclic-GMP-AMP (cGAMP) in response to cytoplasmic DNA (3,4). cGAMP binds and activates STING (3,4). In addition, detection of cytoplasmic DNA by nucleic acid sensors, including DDX41 or IFI16, results in STING activation (5,6). Following activation, STING translocates with TBK1 to perinuclear endosomes (7). The TBK1 kinase phosphorylates and activates interferon regulatory factors (IRFs) and NF-κB, which leads to the induction of type I interferon and other immune response genes (1,2,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Stimulator of interferon genes (STING, TMEM173, MITA) is a transmembrane adaptor protein that is a critical component of the cellular innate immune response to pathogenic cytoplasmic DNA (1,2). STING is a ubiquitously expressed protein found predominantly in the ER (1). The enzyme cGAMP synthase (cGAS) produces the second messenger cyclic-GMP-AMP (cGAMP) in response to cytoplasmic DNA (3,4). cGAMP binds and activates STING (3,4). In addition, detection of cytoplasmic DNA by nucleic acid sensors, including DDX41 or IFI16, results in STING activation (5,6). Following activation, STING translocates with TBK1 to perinuclear endosomes (7). The TBK1 kinase phosphorylates and activates interferon regulatory factors (IRFs) and NF-κB, which leads to the induction of type I interferon and other immune response genes (1,2,7).