Interested in promotions? | Click here >>

Product listing: Stathmin Antibody, UniProt ID P16949 #3352 to YAP (D8H1X) XP® Rabbit mAb (Alexa Fluor® 488 Conjugate), UniProt ID P46937 #14729

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Stathmin is a ubiquitously expressed microtubule destabilizing phosphoprotein that is upregulated in a number of cancers. The amino terminus of the protein contains multiple phosphorylation sites and is involved in the promotion of tubulin filament depolymerization. Phosphorylation at these sites inactivates the protein and stabilizes microtubules. Ser16 phosphorylation by CaM kinases II and IV (1,2) increases during G2/M-phase and is involved in mitotic spindle regulation (3,4). Ser38 is a target for cdc2 kinase (5) and TNF-induced cell death gives rise to reactive oxygen intermediates leading to hyperphosphorylation of stathmin (6). EGF receptor activation of Rac and cdc42 also increases phosphorylation of stathmin on Ser16 and Ser38 (7). Other closely related family members are neuronally expressed and include SCG10, SCLIP, RB3 and its splice variants RB3' and RB3''. Stathmin and SCG10 have been shown to play roles in neuronal-like development in PC-12 cells (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: Troponin, working in conjunction with tropomyosin, functions as a molecular switch that regulates muscle contraction in response to changes in the intracellular Ca2+ concentration. Troponin consists of three subunits: the Ca2+-binding subunit troponin C (TnC), the tropomyosin-binding subunit troponin T (TnT), and the inhibitory subunit troponin I (TnI) (1). In response to β-adrenergic stimulation of the heart, Ser23 and Ser24 of TnI (cardiac) are phosphorylated by PKA and PKC. This phosphorylation stimulates a conformational change of the regulatory domain of TnC, reduces the association between TnI and TnC, and decreases myofilament Ca2+ sensitivity by reducing the Ca2+ binding affinity of TnC (1-3).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: α-Actinin belongs to the spectrin family of cytoskeletal proteins. It was first recognized as an actin cross-linking protein, forming an antiparallel homodimer with an actin binding head at the amino terminus of each monomer. The α-actinin protein interacts with a large number of proteins involved in signaling to the cytoskeleton, including those involved in cellular adhesion, migration, and immune cell targeting (1). The interaction of α-actinin with intercellular adhesion molecule-5 (ICAM-5) helps to promote neurite outgrowth (2). In osteoblasts, interaction of α-actinin with integrins stabilizes focal adhesions and may protect cells from apoptosis (3). The cytoskeletal α-actinin isoforms 1 and 4 (ACTN1, ACTN4) are non-muscle proteins that are present in stress fibers, sites of adhesion and intercellular contacts, filopodia, and lamellipodia. The muscle isoforms 2 and 3 (ACTN2, ACTN3) localize to the Z-discs of striated muscle and to dense bodies and plaques in smooth muscle (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Actin proteins are major components of the eukaryotic cytoskeleton. At least six vertebrate actin isoforms have been identified. The cytoplasmic β- and γ-actin proteins are referred to as “non-muscle” actin proteins as they are predominantly expressed in non-muscle cells where they control cell structure and motility (1). The α-cardiac and α-skeletal actin proteins are expressed in striated cardiac and skeletal muscles, respectively. The smooth muscle α-actin and γ-actin proteins are found primarily in vascular smooth muscle and enteric smooth muscle, respectively. The α-smooth muscle actin (ACTA2) is also known as aortic smooth muscle actin. These actin isoforms regulate the contractile potential of muscle cells (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: The cytoskeleton consists of three types of cytosolic fibers: microtubules, microfilaments (actin filaments), and intermediate filaments. Globular tubulin subunits comprise the microtubule building block, with α/β-tubulin heterodimers forming the tubulin subunit common to all eukaryotic cells. γ-tubulin is required to nucleate polymerization of tubulin subunits to form microtubule polymers. Many cell movements are mediated by microtubule action, including the beating of cilia and flagella, cytoplasmic transport of membrane vesicles, chromosome alignment during meiosis/mitosis, and nerve-cell axon migration. These movements result from competitive microtubule polymerization and depolymerization or through the actions of microtubule motor proteins (1).

$260
100 µl
$630
300 µl
APPLICATIONS
REACTIVITY
Bovine, D. melanogaster, Hamster, Human, Mink, Monkey, Mouse, Rat, Zebrafish

Application Methods: Western Blotting

Background: Actin, a ubiquitous eukaryotic protein, is the major component of the cytoskeleton. At least six isoforms are known in mammals. Nonmuscle β- and γ-actin, also known as cytoplasmic actin, are predominantly expressed in nonmuscle cells, controlling cell structure and motility (1). α-cardiac and α-skeletal actin are expressed in striated cardiac and skeletal muscles, respectively; two smooth muscle actins, α- and γ-actin, are found primarily in vascular smooth muscle and enteric smooth muscle, respectively. These actin isoforms regulate the contractile potential of muscle cells (1). Actin exists mainly as a fibrous polymer, F-actin. In response to cytoskeletal reorganizing signals during processes such as cytokinesis, endocytosis, or stress, cofilin promotes fragmentation and depolymerization of F-actin, resulting in an increase in the monomeric globular form, G-actin (2). The ARP2/3 complex stabilizes F-actin fragments and promotes formation of new actin filaments (2). Research studies have shown that actin is hyperphosphorylated in primary breast tumors (3). Cleavage of actin under apoptotic conditions has been observed in vitro and in cardiac and skeletal muscle, as shown in research studies (4-6). Actin cleavage by caspase-3 may accelerate ubiquitin/proteasome-dependent muscle proteolysis (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat, Zebrafish

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: The cytoskeleton consists of three types of cytosolic fibers: microtubules, microfilaments (actin filaments), and intermediate filaments. Globular tubulin subunits comprise the microtubule building block, with α/β-tubulin heterodimers forming the tubulin subunit common to all eukaryotic cells. γ-tubulin is required to nucleate polymerization of tubulin subunits to form microtubule polymers. Many cell movements are mediated by microtubule action, including the beating of cilia and flagella, cytoplasmic transport of membrane vesicles, chromosome alignment during meiosis/mitosis, and nerve-cell axon migration. These movements result from competitive microtubule polymerization and depolymerization or through the actions of microtubule motor proteins (1).

The StemLight™ iPS cell Reprogramming Antibody Kit contains a panel of antibodies for the detection of various proteins, combinations of which have been used to reprogram somatic cells to Induced Pluripotent Stem (iPS) cells. The kit can be used to track efficiency of expression of the reprogramming factors following transfection, viral transduction and other means of protein delivery. The kit components are pre-optimized for parallel use in immunofluorescent analysis at a standard dilution, but components are also validated for use in other applications --please refer to individual data sheet information for application specific recommendations. Enough reagents are provided for 160 immunofluorescent assays based on a working volume of 100 μl.

Background: Pluripotency is the ability of a cell to differentiate into cell types of the three germ layers, the endoderm, ectoderm and mesoderm. It is a property shared by embryonic stem cells, embryonic carcinoma and induced pluripotent cells.Oct-4, Sox2 and Nanog are key transcriptional regulators that are highly expressed in pluripotent cells (1). Together they form a transcriptional network that maintains cells in a pluripotent state (2,3). Over-expression of Oct-4 and Sox2 along with Klf4 and c- Myc can induce pluripotency in both mouse and human somatic cells, highlighting their roles as key regulators of the transcrip- tional network necessary for renewal and pluripotency (4-5). It has also been demonstrated that overexpression of Oct-4, Sox2, Nanog and Lin28 can induce pluripotency in human somatic cells (6). Upon differentiation of pluripotent cultures, expression of Oct-4, Nanog and Sox2 is downregulated.SSEA4, TRA-1-81 and TRA-1-60 antibodies recognize antigens expressed on the cell surface of all pluripotent cells. SSEA4 recognizes a glycolipid carbohydrate epitope (7). TRA-1-60(S) and TRA-1-81 antibodies recognize different proteoglycan epitopes on variants of the same protein, podocalyxin (8). These epitopes are neuraminadase sensitive and resistant, respectively. Reactivity of SSEA4, TRA-1-81 and TRA-1-60 antibodies with their respective cell surface markers are lost upon differentiation of pluripotent cells, corresponding with a loss of pluripotent potential (9).

StemLight™ Pluripotency Transcription Factor Antibody Kit contains a panel of antibodies for the detection of Oct-4, Nanog, and Sox2, key components of the core pluripotency transcription network in embryonic stem (ES) and induced pluripotent stem (iPS) cells. The kit can be used to track the pluripotent potential of human ES or iPS cells. The loss of these markers indicates a loss of pluripotency or differentiation of the culture. The kit components are pre-optimized for parallel use in immunofluorescent analysis at a standard dilution, but components are also validated for use in other applications - please refer to individual datasheet information for application specific recommendations. Enough reagents are provided for 160 immunofluorescent assays based on a working volume of 100 μl.

Background: Pluripotency is the ability of a cell to differentiate into cell types of the three germ layers, the endoderm, ectoderm and mesoderm. It is a property shared by embryonic stem cells, embryonic carcinoma, and induced pluripotent cells.Oct-4, Sox2, and Nanog are key transcriptional regulators that are highly expressed in pluripotent cells (1). Together they form a transcriptional network that maintains cells in a pluripotent state (2,3). Over-expression of Oct-4 and Sox2, along with KLF4 and c-Myc can induce pluripotency in both mouse and human somatic cells, highlighting their roles as key regulators of the transcriptional network necessary for renewal and pluripotency (4-5). It has also been demonstrated that overexpression of Oct-4, Sox2, Nanog, and Lin28 can induce pluripotency in human somatic cells (6). Upon differentiation of pluripotent cultures, expression of Oct-4, Nanog, and Sox2 is downregulated.

The Epithelial-Mesenchymal Transition (EMT) Antibody Sampler Kit provides an economical means of evaluating EMT. The kit contains enough primary antibody to perform two western blots per primary.
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Alpha-fetoprotein (AFP) is a 65 kDa glycoprotein found in the mammalian fetal liver, yolk sac, and GI tract. While AFP expression in adult cells is low, it is aberrantly expressed in adult liver cancer cells (1,2). The tumor suppressor gene p53 and β-catenin are both involved in the regulation of AFP expression. In normal adult cells, p53 binds to the repressor region of the AFP gene, thereby blocking transcription. Mutations in both p53 and β-catenin are associated with aberrant expression of AFP. Research studies have shown that elevated serum AFP levels are predictive of hepatocellular carcinoma (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Fibroblast growth factors are a family of broad-spectrum growth factors influencing a plethora of cellular activities. The interaction of at least 23 ligands, 4 receptors and multiple coreceptors provides a dramatic complexity to a signaling system capable of effecting a multitude of responses (1,2). Basic fibroblast growth factor (bFGF or FGF2), initially identified as a mitogen with prominent angiogenic properties, is now recognized as a multifunctional growth factor (3). It is clear that bFGF produces its biological effects in target cells by signaling through cell-surface FGF receptors. bFGF binds to all four FGF receptors. Ligand binding induces receptor dimerization and autophosphorylation, allowing binding and activation of cytoplasmic downstream target proteins, including FRS-2, PLC and Crk (4,5). The FGF signaling pathway appears to play a significant role not only in normal cell growth regulation but also in tumor development and progression (6).Acidic FGF (aFGF or FGF1) is another extensively investigated protein of the FGF family. aFGF shares 55% DNA sequence homology with bFGF. These two growth factors are ubiquitously expressed and exhibit a wide spectrum of similiar biological activities with quantitative differences likely due to variation in receptor affinity or binding (7).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Western Blotting

Background: CD133, also known as Prominin, was first described as a cell surface marker recognized by monoclonal antibody AC133 on putative hematopoietic stem cells (1). Subsequent cDNA cloning indicated that CD133 is a five-transmembrane protein with a predicated molecular weight of 97 kDa. Due to heavy glycosylation, its apparent molecular weight is 130 kDa as determined by SDS-PAGE analysis (2). Besides blood stem cells, CD133 is expressed on and used to isolate other stem cells, including cancer stem cells (3-7). A deletion mutation in CD133 produces aberrant protein localization and may result in retinal degeneration in humans (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin)

Background: SSEA-1 antibody detects a lactoseries oligosaccharide antigen that is expressed on the surface of mouse embryonal carcinoma and embryonic stem cells (1). This antigen is also found on early mouse embryos and both mouse and human germ cells, but is absent on human embryonic stem cells and human embryonic carcinoma cells. Expression of SSEA1 in these human cell types increases upon differentiation, while on the mouse cell types differentiation leads to decreased expression (2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Notch signaling is activated upon engagement of the Notch receptor with its ligands, the DSL (Delta, Serrate, Lag2) proteins of single-pass type I membrane proteins. The DSL proteins contain multiple EGF-like repeats and a DSL domain that is required for binding to Notch (1,2). Five DSL proteins have been identified in mammals: Jagged1, Jagged2, Delta-like (DLL) 1, 3 and 4 (3). Ligand binding to the Notch receptor results in two sequential proteolytic cleavages of the receptor by the ADAM protease and the γ-secretase complex. The intracellular domain of Notch is released and then translocates to the nucleus where it activates transcription. Notch ligands may also be processed in a way similar to Notch, suggesting a bi-directional signaling through receptor-ligand interactions (4-6).

$269
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: HES1 (Hairy and Enhancer of Split 1) is one of seven members of the HES family of basic helix-loop-helix (bHLH) transcription factors which function primarily to repress transcription of bHLH-dependent genes (1). HES1 is understood to play an important conserved role in maintaining pluripotency of embryonic and adult stem/progenitor cells via the transcriptional repression of genes that promote differentiation (1,2). HES1 is particularly well known as a repressive mediator of the canonical Notch signaling pathway (3). HES1 plays a key role in mediating Notch-dependent T cell lineage commitment (4), and has been reported to be an essential mediator of Notch-induced T cell acute lymphoblastic leukemia (T-ALL) (4,5). HES1 is also reported to mediate Notch-induced repression of differentiation in a number of cancer cell types. A conditional deletion of HES1 from intestinal tumor cells in APC-mutant mice reduced tumor cell proliferation, while promoting differentiation toward epithelial lineages (6). Overexpression of HES1 in a human osteosarcoma (OS) cell line was shown to repress expression of the Notch antagonist Dtx1, leading to increased OS cell invasiveness (7). Other genes subject to transcriptional repression by HES1 include Neurogenin-2, Math1/Atoh1 and the NOTCH ligands DLL1 and Jagged1 (6,8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Western Blotting

Background: Hypoxia-inducible factor (HIF) is essential for the cellular response to hypoxia (1,2). Under normoxia conditions, the α subunit of HIF is ubiquitinated by von Hippel-Lindau (VHL) protein and is degraded in the ubiquitin/proteasome pathway (1,2). Hypoxia inhibits the degradation of the α subunit, which leads to its stabilization (1,2). HIF, in turn, regulates the transcription of a variety of genes that respond to hypoxia conditions (1,2). There are several isoforms of the HIF α subunit (2). Studies have found that HIF-1α and HIF-2α expression is increased in some human cancers (2). HIF-1α has both pro- and anti-proliferative activities, whereas HIF-2α does not possess anti-proliferative activity (2). Therefore, HIF-2α likely plays an important role in tumorigenesis (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Inhibitor of DNA-binding-2 (Id2) is a member of the Id proteins which belong to the helix-loop-helix (HLH) protein family. The Id protein functions by binding to specific transcription factors and preventing their dimerization and DNA binding (1-3). Id2 interacts with a wide variety of transcription factors including E proteins (5), TCS (4), Pax (6) and the tumor suppressor Rb (1). Id2 has been shown to be important in regulating cellular differentiation, proliferation, development and tumorgenesis (7-9). In tumor cells, increased levels of Id2 functionally inactivate Rb, leading to cellular transformation and cancer (10,11). Id2 is therefore a promising therapeutic target for treatment of cancer (12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Notch proteins (Notch1-4) are a family of transmembrane receptors that play important roles in development and the determination of cell fate (1). Mature Notch receptors are processed and assembled as heterodimeric proteins, with each dimer comprised of a large extracellular ligand-binding domain, a single-pass transmembrane domain, and a smaller cytoplasmic subunit (Notch intracellular domain, NICD) (2). Binding of Notch receptors to ligands of the Delta-Serrate-Lag2 (DSL) family triggers heterodimer dissociation, exposing the receptors to proteolytic cleavages; these result in release of the NICD, which translocates to the nucleus and activates transcription of downstream target genes (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Numb contains an amino-terminal phosphotyrosine-binding (PTB) domain and carboxy-terminal endocytic binding motifs for α-adaptin and EH (Eps15 homology) domain-containing proteins, indicating a role in endocytosis (1,2). There are four mammalian Numb splicing isoforms that are differentially expressed and may have distinct functions (3-5). Numb acts as a negative regulator of Notch signaling by promoting ubiquitination and degradation of Notch (6). The protein is asymmetrically segregated into one daughter cell during cell division, producing two daughter cells with different responses to Notch signaling and different cell fates (7,8). The localization of Numb can also be regulated by G-protein coupled receptor (GPCR) and PKC signaling (9).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Bone morphogenetic proteins (BMPs) constitute a large family of signaling molecules that regulate a wide range of critical processes including morphogenesis, cell-fate determination, proliferation, differentiation, and apoptosis (1,2). BMP receptors are members of the TGF-β family of Ser/Thr kinase receptors. Ligand binding induces multimerization, autophosphorylation, and activation of these receptors (3-5). They subsequently phosphorylate Smad1 at Ser463 and Ser465 in the carboxy-terminal motif SSXS, as well as Smad5 and Smad9 (Smad8) at their corresponding sites. These phosphorylated Smads dimerize with the coactivating Smad4 and translocate to the nucleus, where they stimulate transcription of target genes (5).MAP kinases and CDKs 8 and 9 phosphorylate residues in the linker region of Smad1, including Ser206. The phosphorylation of Ser206 recruits Smurf1 to the linker region and leads to the degradation of Smad1 (6). Phosphorylation of this site also promotes Smad1 transcriptional action by recruiting YAP to the linker region (7).

$122
20 µl
$307
100 µl
$719
300 µl
APPLICATIONS
REACTIVITY
Human, Mink, Mouse, Rat

Application Methods: Western Blotting

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Prospero homeobox protein 1 (PROX1) is a transcription factor known for its roles in organ development and lymphangiogenesis. It plays a critical role in the development of the CNS, lens, retina, liver, pancreas, and heart, and is considered to be the master regulator of the lymphatic system (1,2). PROX1 initiates the differentiation of lymphatic vasculature from the cardinal vein, where it is regulated by Sox18 (3,4). The PROX1 suppressor COUP-TFII represses the Notch pathway in venous endothelium, which prevents arterialization (4). HIF-1α and HIF-1β mediated hypoxia induces PROX1, which suggests a means of promoting lymphangiogenesis. Since the tumor microenvironment is typically hypoxic, regulation of PROX1 by hypoxia may also explain the up-regulation of this transcription factor in some cancers (2). PROX1 promotes colon cancer progression by down-regulating E-cadherin via miR-9, which promotes epithelial-mesenchymal transition (EMT) and metastasis (5). The PROX1 protein can act as a tumor suppressor in cases of hepatocellular carcinoma. PROX1 represses transcription of TWIST1, a transcription factor that promotes metastasis by binding the E-cadherin promoter. The function of PROX1 in other cancers is an area of active research (6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Snail is a zinc-finger transcription factor that can repress E-cadherin transcription. Downregulation of E-cadherin is associated with epithelial-mesenchymal transition during embryonic development, a process also exploited by invasive cancer cells (1-3). Indeed, loss of E-cadherin expression is correlated with the invasive properties of some tumors and there is a considerable inverse correlation between Snail and E-cadherin mRNA levels in epithelial tumor cell lines (4,5). In addition, Snail blocks the cell cycle and confers resistance to cell death (6). Phosphorylation of Snail by GSK-3 and PAK1 regulates its stability, cellular localization and function (7-10).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Embryonic stem cells (ESC) derived from the inner cell mass of the blastocyst are unique in their pluripotent capacity and potential for self-renewal (1). Research studies demonstrate that a set of transcription factors that includes Oct-4, Sox2, and Nanog forms a transcriptional network that maintains cells in a pluripotent state (2,3). Chromatin immunoprecipitation experiments show that Sox2 and Oct-4 bind to thousands of gene regulatory sites, many of which regulate cell pluripotency and early embryonic development (4,5). siRNA knockdown of either Sox2 or Oct-4 results in loss of pluripotency (6). Induced overexpression of Oct-4 and Sox2, along with additional transcription factors Klf4 and c-Myc, can reprogram both mouse and human somatic cells to a pluripotent state (7,8). Additional evidence demonstrates that Sox2 is also present in adult multipotent progenitors that give rise to some adult epithelial tissues, including several glands, the glandular stomach, testes, and cervix. Sox2 is thought to regulate target gene expression important for survival and regeneration of these tissues (9).

$115
20 µl
$269
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Sox9 is a transcription factor with an HMG-box DNA binding domain that has homology to the HMG domain of the mammalian testis-determining factor, SRY (1). Sox9 regulates several important processes during embryonic development including chondrogenesis, during which it contributes to skeletal formation and digit specification (2,3). Sox9 also coordinates with steroidogenic factor-1 to direct Sertoli cell-specific expression of anti-Mullerian hormone during embryogenesis, thereby contributing to male sex determination (4). In addition, Sox9 is reportedly involved in the maintenance of adult stem cell populations, including multipotent neural stem cells (5), hair follicle stem cells (6), and mammary stem cells (7). Recent interest has focused on the role of Sox9 in tumor biology. For example, research studies have shown that Sox9 expression in lung adenocarcinoma induces a mesenchymal phenotype in tumor cells (8). Other research studies have shown that YAP1 induced upregulation of Sox9 confers cancer stem cell like properties on esophageal cancer cells (9). Moreover, Sox9 expression has been linked with several other tumor types including ovarian, prostate, and pancreatic malignancies (10-12).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated TCF1/TCF7 (C63D9) Rabbit mAb #2203.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated YAP (D8H1X) XP® Rabbit mAb #14074.
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: YAP (Yes-associated protein, YAP65) was identified based on its ability to associate with the SH3 domain of Yes. It also binds to other SH3 domain-containing proteins such as Nck, Crk, Src, and Abl (1). In addition to the SH3 binding motif, YAP contains a PDZ interaction motif, a coiled-coil domain, and WW domains (2-4). While initial studies of YAP all pointed towards a role in anchoring and targeting to specific subcellular compartments, subsequent studies showed that YAP is a transcriptional co-activator by virtue of its WW domain interacting with the PY motif (PPxY) of the transcription factor PEBP2 and other transcription factors (5). In its capacity as a transcriptional co-activator, YAP is now widely recognized as a central mediator of the Hippo Pathway, which plays a fundamental and widely conserved role in regulating tissue growth and organ size. Phosphorylation at multiple sites (e.g., Ser109, Ser127) by LATS kinases promotes YAP translocation from the nucleus to the cytoplasm, where it is sequestered through association with 14-3-3 proteins (6-8). These LATS-driven phosphorylation events serve to prime YAP for subsequent phosphorylation by CK1δ/ε in an adjacent phosphodegron, triggering proteosomal degradation of YAP (9).