Dropping with the temps: Cool deals on CST mAbs | Learn More >>

Product listing: HIF-1α Antibody, UniProt ID Q16665 #3716 to cGAS (D3O8O) Rabbit mAb (Mouse Specific), UniProt ID Q8C6L5 #31659

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Western Blotting

Background: Hypoxia-inducible factor 1 (HIF1) is a heterodimeric transcription factor that plays a critical role in the cellular response to hypoxia (1). The HIF1 complex consists of two subunits, HIF-1α and HIF-1β, which are basic helix-loop-helix proteins of the PAS (Per, ARNT, Sim) family (2). HIF1 regulates the transcription of a broad range of genes that facilitate responses to the hypoxic environment, including genes regulating angiogenesis, erythropoiesis, cell cycle, metabolism, and apoptosis. The widely expressed HIF-1α is typically degraded rapidly in normoxic cells by the ubiquitin/proteasomal pathway. Under normoxic conditions, HIF-1α is proline hydroxylated leading to a conformational change that promotes binding to the von Hippel Lindau protein (VHL) E3 ligase complex; ubiquitination and proteasomal degradation follows (3,4). Both hypoxic conditions and chemical hydroxylase inhibitors (such as desferrioxamine and cobalt) inhibit HIF-1α degradation and lead to its stabilization. In addition, HIF-1α can be induced in an oxygen-independent manner by various cytokines through the PI3K-AKT-mTOR pathway (5-7).HIF-1β is also known as AhR nuclear translocator (ARNT) due to its ability to partner with the aryl hydrocarbon receptor (AhR) to form a heterodimeric transcription factor complex (8). Together with AhR, HIF-1β plays an important role in xenobiotics metabolism (8). In addition, a chromosomal translocation leading to a TEL-ARNT fusion protein is associated with acute myeloblastic leukemia (9). Studies also found that ARNT/HIF-1β expression levels decrease significantly in pancreatic islets from patients with type 2 diabetes, suggesting that HIF-1β plays an important role in pancreatic β-cell function (10).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Paired box (PAX) proteins are a family of transcription factors that play important and diverse roles in animal development (1). Nine PAX proteins (PAX1-9) have been described in humans and other mammals. They are defined by the presence of an amino-terminal "paired" domain, consisting of two helix-turn-helix motifs, with DNA binding activity (2). PAX proteins are classified into four structurally distinct subgroups (I-IV) based on the absence or presence of a carboxy-terminal homeodomain and a central octapeptide region. Subgroup I (PAX1 and 9) contains the octapeptide but lacks the homeodomain; subgroup II (PAX2, 5, and 8) contains the octapeptide and a truncated homeodomain; subgroup III (PAX3 and 7) contains the octapeptide and a complete homeodomain; and subgroup IV (PAX4 and 6) contains a complete homeodomain but lacks the octapeptide region (2). PAX proteins play critically important roles in development by regulating transcriptional networks responsible for embryonic patterning and organogenesis (3); a subset of PAX proteins also maintain functional importance during postnatal development (4). Research studies have implicated genetic mutations that result in aberrant expression of PAX genes in a number of cancer subtypes (1-3), with members of subgroups II and III identified as potential mediators of tumor progression (2).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: YAP (Yes-associated protein, YAP65) was identified based on its ability to associate with the SH3 domain of Yes. It also binds to other SH3 domain-containing proteins such as Nck, Crk, Src, and Abl (1). In addition to the SH3 binding motif, YAP contains a PDZ interaction motif, a coiled-coil domain, and WW domains (2-4). While initial studies of YAP all pointed towards a role in anchoring and targeting to specific subcellular compartments, subsequent studies showed that YAP is a transcriptional co-activator by virtue of its WW domain interacting with the PY motif (PPxY) of the transcription factor PEBP2 and other transcription factors (5). In its capacity as a transcriptional co-activator, YAP is now widely recognized as a central mediator of the Hippo Pathway, which plays a fundamental and widely conserved role in regulating tissue growth and organ size. Phosphorylation at multiple sites (e.g., Ser127, Ser397) by LATS kinases promotes YAP translocation from the nucleus to the cytoplasm, where it is sequestered through association with 14-3-3 proteins (6-8). These LATS-driven phosphorylation events serve to prime YAP for subsequent phosphorylation by CK1δ/ε in an adjacent phosphodegron, triggering proteosomal degradation of YAP (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Members of the Smad family of signal transduction molecules are components of a critical intracellular pathway that transmit TGF-β signals from the cell surface into the nucleus. Three distinct classes of Smads have been defined: the receptor-regulated Smads (R-Smads), which include Smad1, 2, 3, 5, and 8; the common-mediator Smad (co-Smad), Smad4; and the antagonistic or inhibitory Smads (I-Smads), Smad6 and 7 (1-5). Activated type I receptors associate with specific R-Smads and phosphorylate them on a conserved carboxy terminal SSXS motif. The phosphorylated R-Smad dissociates from the receptor and forms a heteromeric complex with the co-Smad (Smad4), allowing translocation of the complex to the nucleus. Once in the nucleus, Smads can target a variety of DNA binding proteins to regulate transcriptional responses (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: SPARC (secreted protein acidic and rich in cysteine), also known as osteonectin and BM40, is a secreted matricellular glycoprotein that belongs to a group of functionally related glycoproteins that includes tenascins C and X, thrombospondins 1 and 2, and osteopontin (1). Members in this class of glycoproteins are involved in tissue renewal, tissue remodeling, and embryonic development and work by exerting counter-adhesive and antiproliferative effects that lead to changes in cell shape, disruption of cell adhesion, and inhibition of the cell cycle (2). SPARC is expressed at high levels in bone tissue but is widely distributed in many other tissues and cell types (3), and is known to be associated with tissues undergoing morphogenesis, angiogenesis, mineralization, and other pathological responses to injury and tumorigenesis (4,5). SPARC has also been linked with obesity and diabetes (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: TACE (TNF-α converting enzyme), also known as ADAM17, is a transmembrane metalloprotease that plays a key role in the cleavage of a number cell surface molecules in a process known as “shedding". TACE is abundantly expressed in many adult tissues, but in fetal development expression is differentially regulated (1). An important substrate of TACE is pro-TNF-α (1). Increased expression of TACE is associated with several pathological conditions including osteoarthritis and rheumatoid arthritis, where the pro-inflammatory effects of increased TNF-α contribute to disease pathogenesis (2,3). Regulation of other important molecules by TACE such as EGFR and Notch has recently been documented. TACE is responsible for the shedding of EGFR ligands such as amphiregulin and TNF-α. Some tumors have hyperactivated EGFR due to upregulated TNF-α production and upregulated TACE, making TACE a potential target for drug development (4). TACE activates Notch in a ligand-independent manner and has been shown to play a role in the development of the Drosophila nervous system (5). TACE has also been proposed to act as α-secretase for amyloid precursor protein (APP) (6), and to be involved in the renewal and proliferation of neural stem cells (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Transforming growth factor-β (TGF-β) superfamily members are critical regulators of cell proliferation and differentiation, developmental patterning and morphogenesis, and disease pathogenesis (1-4). TGF-β elicits signaling through three cell surface receptors: type I (RI), type II (RII), and type III (RIII). Type I and type II receptors are serine/threonine kinases that form a heteromeric complex. In response to ligand binding, the type II receptors form a stable complex with the type I receptors allowing phosphorylation and activation of type I receptor kinases (5). The type III receptor, also known as betaglycan, is a transmembrane proteoglycan with a large extracellular domain that binds TGF-β with high affinity but lacks a cytoplasmic signaling domain (6,7). Expression of the type III receptor can regulate TGF-β signaling through presentation of the ligand to the signaling complex. The only known direct TGF-β signaling effectors are the Smad family proteins, which transduce signals from the cell surface directly to the nucleus to regulate target gene transcription (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Western Blotting

Background: The Wnt family includes several secreted glycoproteins that play important roles in animal development (1). There are 19 Wnt genes in the human genome that encode functionally distinct Wnt proteins (2). Wnt members bind to the Frizzled family of seven-pass transmembrane proteins and activate several signaling pathways (3). The canonical Wnt/β-catenin pathway also requires a coreceptor from the low-density lipoprotein receptor family (4). Aberrant activation of Wnt signaling pathways is involved in several types of cancers (5).

$260
100 µl
$630
300 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Peroxin-5 (PEX5) is the shuttle receptor that delivers proteins to peroxisomes (1). In the cytosol, PEX5 binds to the peroxisomal targeting signal 1 (PTS1), a short peptide sequence present at the extreme C termini of newly synthesized peroxisomal matrix proteins. The PEX5-cargo complex interacts with the peroxisomal docking/translocation machinery on the peroxisomal membrane, where the cargo is released into the organelle matrix. During this process, PEX5 is monoubiquitinated at a conserved cysteine residue, and the ubiquitin-PEX5 conjugate is released from the organelle into the cytosol, where PEX5 is deubiquitinated and ready the next round of targeting (2,3).

$448
50 sections
1 Kit
The PD-L1, CD3ε, CD8α Multiplex IHC Antibody Panel enables researchers to simultaneously detect these targets in paraffin-embedded tissues using tyramide signal amplification. Each antibody in the panel has been validated for this approach. For recommended staining conditions optimized specifically for this antibody panel please refer to Table 1 on the Data Sheet.
REACTIVITY
Human

Background: The field of cancer immunotherapy is focused on empowering the immune system to fight cancer. This approach has seen recent success in the clinic with targeting immune checkpoint control proteins, such as PD-1 (1,2). Despite this success, clinical biomarkers that predict response to therapeutic strategies involving PD-1 receptor blockade are still under investigation (3-5). While PD-L1 expression has been linked with an increased likelihood of response to anti-PD-1 therapy, research studies have shown that additional factors, such as tumor-immune infiltration and the ratio of effector to regulatory T cells within the tumor, could play a significant role in predicting treatment outcome (6-9).

$448
50 sections
1 Kit
The PD-L1, FoxP3, CD8α Multiplex IHC Antibody Panel enables researchers to simultaneously detect these targets in paraffin-embedded tissues using tyramide signal amplification. Each antibody in the panel has been validated for this approach. For recommended staining conditions optimized specifically for this antibody panel please refer to Table 1 on the Data Sheet.
REACTIVITY
Human

Background: The field of cancer immunotherapy is focused on empowering the immune system to fight cancer. This approach has seen recent success in the clinic with targeting immune checkpoint control proteins, such as PD-1 (1,2). Despite this success, clinical biomarkers that predict response to therapeutic strategies involving PD-1 receptor blockade are still under investigation (3-5). While PD-L1 expression has been linked with an increased likelihood of response to anti-PD-1 therapy, research studies have shown that additional factors, such as tumor-immune infiltration and the ratio of effector to regulatory T cells within the tumor, could play a significant role in predicting treatment outcome (6-9).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: TNFRSF9 is a member of the tumor necrosis factor receptor superfamily (1, 2). It is also called 4-1BB or CD137 (1, 2). 4-1BB/CD137/TNFRSF9 is expressed in activated CD4+ and CD8+ T cells, natural killer cells and dendritic cells (2-5). The ligand 4-1BBL/CD137L/TNFSF9 on antigen presenting cells binds to 4-1BB/CD137/TNFRSF9 and costimulates the activation of T cells (5). The binding of agonistic antibodies to 4-1BB/CD137/TNFRSF9 also leads to costimulation for T cell activation (5). Studies have shown the effectiveness of targeting 4-1BB/CD137/TNFRSF9 by its agonistic antibodies in cancer immunotherapy (6).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Basigin (EMMPRIN, CD147) is a type I integral membrane receptor protein belonging to the immunoglobulin superfamily (1). Basigin is a glycosylated protein with four known isoforms, of which isoform 2 is the most abundantly expressed (2). Multiple functions have been ascribed to Basigin; foremost among these is stimulating the secretion of extracellular matrix metalloproteinases by adjacent fibroblasts, a function which has been implicated in promoting tumor progression (2-4). Research studies have shown that Basigin is overexpressed by many tumor cells, and its expression level may correlate with tumor malignancy (5,6). A recent study identified the BASIGIN gene as a regulatory target of Slug, suggesting a role for Basigin in the process of epithelial-mesenchymal transition (7). Basigin has also been identified as a marker for a subset of highly suppressive regulatory T cells (8), and as an obligate receptor for the malarial parasite Plasmodium falciparum on human erythrocytes (9).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin)

Background: CD14 is a leucine-rich repeat-containing pattern recognition receptor with expression largely restricted to the monocyte/macrophage cell lineage (1). Research studies have shown that CD14 is a bacterial lipopolysaccharide (LPS) binding glycoprotein, expressed as either a GPI-linked membrane protein or a soluble plasma protein (2). LPS induces an upregulation of GPI-linked CD14 expression, which facilitates TLR4 signaling and macrophage activation in response to bacterial infection (3-5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Western Blotting

Background: The mannose receptor (MR/CLEC13D/CD206/MMR/MRC1/Macrophage mannose receptor 1) is an endocytic receptor expressed by populations of dendritic cells, macrophages and nonvascular endothelium (1). The mannose receptor is a heavily glycosylated type I transmembrane protein with three types of extracellular domains and a short carboxy-terminal cytoplasmic domain with no apparent signaling motif (2-4). The extracellular portion of the protein is made up of a CR domain, which binds sulfated glycans, an FNII domain, which binds collagens, and eight C-type lectin domains, which bind carbohydrates containing mannose, fucose or GlcNAc (4-7). The receptor recycles between the plasma membrane and early endosomes (8). Functions include a role in antigen cross-presentation, clearance of endogenous proteins, pathogen detection and trafficking through lymphatic vessels (9-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: CD31 (Platelet Endothelial Cell Adhesion Molecule-1: PECAM-1), a member of the Ig superfamily of cell adhesion molecules, is expressed by circulating platelets, monocytes, neutrophils, some T cells, and endothelial cells and modulates cell adhesion, endothelial cell migration, and angiogenesis (1). CD31 is phosphorylated on Tyr686 at the cytoplasmic carboxy-terminal tail upon various stimuli (e.g. mechanical or oxidative stress), presumably by Src family members (2). The tyrosine phosphorylation mediates associations with a number of SH2 domain-containing binding partners such as PI3 kinase, SHIP, PLCγ, and SHP-2. Thus, CD31 serves as a scaffold for various signaling molecules (3).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Western Blotting

Background: CD31 (Platelet Endothelial Cell Adhesion Molecule-1: PECAM-1), a member of the Ig superfamily of cell adhesion molecules, is expressed by circulating platelets, monocytes, neutrophils, some T cells, and endothelial cells and modulates cell adhesion, endothelial cell migration, and angiogenesis (1). CD31 is phosphorylated on Tyr686 at the cytoplasmic carboxy-terminal tail upon various stimuli (e.g. mechanical or oxidative stress), presumably by Src family members (2). The tyrosine phosphorylation mediates associations with a number of SH2 domain-containing binding partners such as PI3 kinase, SHIP, PLCγ, and SHP-2. Thus, CD31 serves as a scaffold for various signaling molecules (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: CD44 is a type I transmembrane glycoprotein that mediates cell-cell and cell-matrix interaction through its affinity for hyaluronic acid (HA) and possibly through other parts of the extracellular matrix (ECM). CD44 is highly polymorphic, possesses a number of alternative splice variants and undergoes extensive post-translational modifications (1,2). Increased surface levels of CD44 are characteristic of T cell activation, and expression of the protein is upregulated during the inflammatory response. Research studies have shown that interactions between CD44 and HER2 are linked to an increase in ovarian carcinoma cell growth (1-3). CD44 interacts with ezrin, radixin and moesin (ERM), linking the actin cytoskeleton to the plasma membrane and the ECM (4-6). CD44 is constitutively phosphorylated at Ser325 in resting cells. Activation of PKC results in phosphorylation of Ser291, dephosphorylation of Ser325, disassociation of ezrin from CD44, and directional motility (4).

$269
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: IHC-Leica® Bond™, Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation

Background: The protein phosphatase (PTP) receptor CD45 is a type I transmembrane protein comprised of a pair of intracellular tyrosine phosphatase domains and a variable extracellular domain generated by alternative splicing (1). The catalytic activity of CD45 is a function of the first phosphatase domain (D1) while the second phosphatase domain (D2) may interact with and stabilize the first domain, or recruit/bind substrates (2,3). CD45 interacts directly with antigen receptor complex proteins or activates Src family kinases involved in the regulation of T- and B-cell antigen receptor signaling (1). Specifically, CD45 dephosphorylates Src-family kinases Lck and Fyn at their conserved negative regulatory carboxy-terminal tyrosine residues and upregulates kinase activity. Conversely, studies indicate that CD45 can also inhibit Lck and Fyn by dephosphorylating their positive regulatory autophosphorylation site. CD45 appears to be both a positive and a negative regulator that conducts signals depending on specific stimuli and cell type (1). Human leukocytes including lymphocytes, eosinophils, monocytes, basophils, and neutrophils express CD45, while erythrocytes and platelets are negative for CD45 expression (4).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The protein phosphatase (PTP) receptor CD45 is a type I transmembrane protein comprised of a pair of intracellular tyrosine phosphatase domains and a variable extracellular domain generated by alternative splicing (1). The catalytic activity of CD45 is a function of the first phosphatase domain (D1) while the second phosphatase domain (D2) may interact with and stabilize the first domain, or recruit/bind substrates (2,3). CD45 interacts directly with antigen receptor complex proteins or activates Src family kinases involved in the regulation of T- and B-cell antigen receptor signaling (1). Specifically, CD45 dephosphorylates Src-family kinases Lck and Fyn at their conserved negative regulatory carboxy-terminal tyrosine residues and upregulates kinase activity. Conversely, studies indicate that CD45 can also inhibit Lck and Fyn by dephosphorylating their positive regulatory autophosphorylation site. CD45 appears to be both a positive and a negative regulator that conducts signals depending on specific stimuli and cell type (1). Human leukocytes including lymphocytes, eosinophils, monocytes, basophils, and neutrophils express CD45, while erythrocytes and platelets are negative for CD45 expression (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunohistochemistry (Paraffin), Western Blotting

Background: CD47 is a five-pass transmembrane protein expressed on all normal cells. It binds to the SIRPa that is expressed on myeloid cells including macrophages, and neuronal cells in the central nervous system. Binding of CD47 to SIRPα promotes phosphorylation of tyrosine residues in the immunoreceptor tyrosine-based inhibitory motifs (ITIM) within theSIRPα cytoplasmic tail, inhibiting macrophage phagocytosis towards CD47-expressing cells. In this way, CD47 serves as "don't eat me" signal or a marker of "self", functioning as an innate immune checkpoint. Additionally, CD47 was reported to modulate lymphocyte cell activation and proliferation (1-3). CD47 is over-expressed in many types of cancer. The expression level of CD47 on cancer cells is negatively associated with the response to therapies, and low expression on tumor cells is associated with a better prognosis and survival. Reagents that can block CD47-SIRPα interaction are being actively pursued for therapeutic applications (4,5). In addition to SIRPα, other proteins have been reported to bind to CD47. Thrombospondin 1 (TSP1) competes with SIRPα to bind to CD47 in the extracellular region and activates signaling pathways downstream CD47 (6). CD47 can laterally associate with VEGFR2, FAS, and certain integrins in different contexts, and influences their downstream signaling (7-9). CD47 can be shed from the cell surface by proteolytic cleavage. In addition, CD47 is present on extracellular vesicles including exosomes, suggesting additional extracellular signaling potential (10).

$115
20 µl
$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin)

Background: CD68 (macrosialin) is a heavily glycosylated transmembrane protein that is expressed by and commonly used as a marker for monocytes and macrophages (1, 2). It is found on the plasma membrane, as well as endosomal and lysosomal membranes (1-3). It is proposed to bind OxLDL and has been observed as a homodimer (3, 4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: CD68 (macrosialin) is a heavily glycosylated transmembrane protein that is expressed by and commonly used as a marker for monocytes and macrophages (1, 2). It is found on the plasma membrane, as well as endosomal and lysosomal membranes (1-3). It is proposed to bind OxLDL and has been observed as a homodimer (3, 4).

$269
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: IHC-Leica® Bond™, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: CD80 (B7-1, BB1) and CD86 (B7-2, B70) are members of the B7 family of cell surface ligands that regulate T cell activation and immune responses. CD80 is expressed on activated antigen presenting cells, including dendritic cells, B cells, monocytes, and macrophages. CD86 is expressed on resting monocytes, dendritic cells, activated B lymphocytes, and can be further upregulated in the presence of inflammation (1-3). CD80 and CD86 are ligands for CD28, which functions as a T cell costimulatory receptor. Interaction of CD28 with CD80 or CD86 provides the second signal required for naïve T cell activation, T cell proliferation, and acquisition of effector functions (3-7). Alternatively, CD80 and CD86 also act as ligands to CTLA-4, which results in the downregulation of T cell activity (3,7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The CD9 antigen belongs to the tetraspanin family of cell surface glycoproteins, and is characterized by four transmembrane domains, one short extracellular domain (ECL1), and one long extracellular domain (ECL2). Tetraspanins interact with a variety of cell surface proteins and intracellular signaling molecules in specialized tetraspanin-enriched microdomains (TEMs), where they mediate a range of processes including adhesion, motility, membrane organization, and signal transduction (1). Research studies demonstrate that CD9 expression on the egg is required for gamete fusion during fertilization (2-4). CD9 was also shown to play a role in dendritic cell migration, megakaryocyte differentiation, and homing of cord blood CD34+ hematopoietic progenitors to the bone marrow (5-7). In addition, down regulation of CD9 expression is associated with poor prognosis and progression of several types of cancer (8-10). Additional research identified CD9 as an abundant component of exosomes, and may play some role in the fusion of these secreted membrane vesicles with recipient cells (11).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Cyclic GMP-AMP synthase (cGAS, MB21D1) is an antiviral enzyme that produces the second messenger cyclic-GMP-AMP (cGAMP) in response to cytoplasmic DNA (1,2). The cGAS protein acts as a cytosolic DNA sensor that binds DNA and produces the cGAMP second messenger from ATP and GTP (1,2). cGAMP binds to and activates STING, a transmembrane adaptor protein that is a critical component of the cellular innate immune response to pathogenic cytoplasmic DNA (1-4). STING is ubiquitously expressed and found predominantly in the ER (3). Following activation, STING translocates with TBK1 to perinuclear endosomes (5). The TBK1 kinase phosphorylates and activates interferon regulatory factors (IRFs) and NF-κB, which leads to the induction of type I interferon and other immune response genes (3-5).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated cGAS (D1D3G) Rabbit mAb #15102.
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Cyclic GMP-AMP synthase (cGAS, MB21D1) is an antiviral enzyme that produces the second messenger cyclic-GMP-AMP (cGAMP) in response to cytoplasmic DNA (1,2). The cGAS protein acts as a cytosolic DNA sensor that binds DNA and produces the cGAMP second messenger from ATP and GTP (1,2). cGAMP binds to and activates STING, a transmembrane adaptor protein that is a critical component of the cellular innate immune response to pathogenic cytoplasmic DNA (1-4). STING is ubiquitously expressed and found predominantly in the ER (3). Following activation, STING translocates with TBK1 to perinuclear endosomes (5). The TBK1 kinase phosphorylates and activates interferon regulatory factors (IRFs) and NF-κB, which leads to the induction of type I interferon and other immune response genes (3-5).

$260
100 µl
APPLICATIONS
REACTIVITY
Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Cyclic GMP-AMP synthase (cGAS, MB21D1) is an antiviral enzyme that produces the second messenger cyclic-GMP-AMP (cGAMP) in response to cytoplasmic DNA (1,2). The cGAS protein acts as a cytosolic DNA sensor that binds DNA and produces the cGAMP second messenger from ATP and GTP (1,2). cGAMP binds to and activates STING, a transmembrane adaptor protein that is a critical component of the cellular innate immune response to pathogenic cytoplasmic DNA (1-4). STING is ubiquitously expressed and found predominantly in the ER (3). Following activation, STING translocates with TBK1 to perinuclear endosomes (5). The TBK1 kinase phosphorylates and activates interferon regulatory factors (IRFs) and NF-κB, which leads to the induction of type I interferon and other immune response genes (3-5).