20% off purchase of 3 or more products* | Learn More >>

A1 Target

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a member of the hnRNP A/B family of related RNA binding proteins that bind pre-mRNA and are involved in the processing, metabolism, and transport of nuclear pre-mRNA transcripts (1). hnRNP A1 regulates the alternative splicing of c-Src and c-H-Ras (2,3) and modifies initiation of translation of the fibroblast growth factor 2 mRNA (4). hnRNP A1 expression level is elevated in many cancers; knockdown of hnRNP A1 leads to apoptosis in various cancer cells (5). Although predominantly nuclear, hnRNP A1 is continually transported from the nucleus to the cytoplasm where it disassociates from mRNA and is rapidly re-imported into the nucleus (6,7). hnRNP A1 binds to cis-acting repressive sequences (CRS) of HIV-1 to influence HIV-1 production (8,9). HIV-1 enhances hnRNP A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a member of the hnRNP A/B family of related RNA binding proteins that bind pre-mRNA and are involved in the processing, metabolism, and transport of nuclear pre-mRNA transcripts (1). hnRNP A1 regulates the alternative splicing of c-Src and c-H-Ras (2,3) and modifies initiation of translation of the fibroblast growth factor 2 mRNA (4). hnRNP A1 expression level is elevated in many cancers; knockdown of hnRNP A1 leads to apoptosis in various cancer cells (5). Although predominantly nuclear, hnRNP A1 is continually transported from the nucleus to the cytoplasm where it disassociates from mRNA and is rapidly re-imported into the nucleus (6,7). hnRNP A1 binds to cis-acting repressive sequences (CRS) of HIV-1 to influence HIV-1 production (8,9). HIV-1 enhances hnRNP A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a member of the hnRNP A/B family of related RNA binding proteins that bind pre-mRNA and are involved in the processing, metabolism, and transport of nuclear pre-mRNA transcripts (1). hnRNP A1 regulates the alternative splicing of c-Src and c-H-Ras (2,3) and modifies initiation of translation of the fibroblast growth factor 2 mRNA (4). hnRNP A1 expression level is elevated in many cancers; knockdown of hnRNP A1 leads to apoptosis in various cancer cells (5). Although predominantly nuclear, hnRNP A1 is continually transported from the nucleus to the cytoplasm where it disassociates from mRNA and is rapidly re-imported into the nucleus (6,7). hnRNP A1 binds to cis-acting repressive sequences (CRS) of HIV-1 to influence HIV-1 production (8,9). HIV-1 enhances hnRNP A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm (10).

$262
3 nmol
300 µl
SignalSilence® hnRNP A1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit hnRNP A1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) is a member of the hnRNP A/B family of related RNA binding proteins that bind pre-mRNA and are involved in the processing, metabolism, and transport of nuclear pre-mRNA transcripts (1). hnRNP A1 regulates the alternative splicing of c-Src and c-H-Ras (2,3) and modifies initiation of translation of the fibroblast growth factor 2 mRNA (4). hnRNP A1 expression level is elevated in many cancers; knockdown of hnRNP A1 leads to apoptosis in various cancer cells (5). Although predominantly nuclear, hnRNP A1 is continually transported from the nucleus to the cytoplasm where it disassociates from mRNA and is rapidly re-imported into the nucleus (6,7). hnRNP A1 binds to cis-acting repressive sequences (CRS) of HIV-1 to influence HIV-1 production (8,9). HIV-1 enhances hnRNP A1 expression and promotes the relocalization of hnRNP A1 to the cytoplasm (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The Bcl-2-related protein A1 (Bfl-1, BCL2A1) is an anti-apoptotic member of the Bcl-2 family originally cloned from mouse bone marrow as a granulocyte macrophage-colony stimulating factor (GM-CSF)-inducible gene (1). Expression of A1/Bfl-1 is primarily restricted to hematopoietic cells, although it has been detected in some non-hematopoietic tissues including lung and in endothelial cells (1,2). A1/Bfl-1 protein is rapidly induced by NF-κB and is elevated in response to a variety of factors that stimulate this pathway, including TNF-α and IL-1β, CD40, phorbol ester, and LPS (2-4). As with other Bcl-2 family proteins, A1/Bfl-1 functions by binding and antagonizing pro-apoptotic members of the family (Bid, Bim), which inhibits release of mitochondrial cytochrome c (5). In contrast, research studies indicate that the enzyme calpain cleaves A1/Bfl-1 at specific sites within the amino terminal region, creating pro-apoptotic, carboxy-terminal fragments that promote mitochondrial release of cytochrome c and apoptosis (6). Studies suggest a possible therapeutic strategy of targeting apoptosis through use of the specific A1/Bfl-1 cleavage fragments (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Class 3 secreted semaphorin (Sema3A) is a chemorepellent that acts upon a wide variety of axons. As such, it induces a dramatic redistribution and depolymerization of actin filaments that results in growth cone collapse. Plexins are single membrane-spanning signaling proteins encompassing Plexin A1, A2, A3, and A4. Plexins form a complex with neuropilin-1 and -2 and the cell adhesion protein L1 to form a functional semaphorin receptor (1,2). The GTPase Rnd1 binds to the cytoplasmic domain of Plexin A1 to trigger cytoskeletal collapse. In contrast, the GTPase RhoD blocks Rnd1-mediated Plexin A1 activation and repulsion of sympathetic axons by Sema3A (3).

The Pro-Survival Bcl-2 Family Antibody Sampler Kit II provides an economical means to examine several members of the Bcl-2 family. The kit contains enough primary antibody to perform two western blot experiments.

Background: The Bcl-2 family consists of a number of evolutionarily conserved proteins containing Bcl-2 homology domains (BH) that regulate apoptosis through control of mitochondrial membrane permeability and release of cytochrome c (1-3). Four BH domains have been identified (BH1-4) that mediate protein interactions. The family can be separated into three groups based upon function and sequence homology: pro-survival members include Bcl-2, Bcl-xL, Mcl-1, A1 and Bcl-w; pro-apoptotic proteins include Bax, Bak and Bok; and "BH3 only" proteins Bad, Bik, Bid, Puma, Bim, Bmf, Noxa and Hrk. Interactions between death-promoting and death-suppressing Bcl-2 family members has led to a rheostat model in which the ratio of pro-apoptotic and anti-apoptotic proteins controls cell fate (4). Thus, pro-survival members exert their behavior by binding to and antagonizing death-promoting members. In general, the "BH3-only members" can bind to and antagonize the pro-survival proteins leading to increased apoptosis (5). While some redundancy of this system likely exists, tissue specificity, transcriptional and post-translational regulation of many of these family members can account for distinct physiological roles.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: CK2 (formerly called Casein Kinase II) is a highly conserved protein kinase with more than 300 substrates regulating cell growth, cell death, and cell survival. CK2 has been implicated in the response to UV irradiation-induced DNA damage, targeting XRCC1 (1) and BRCA1 (2) as well as regulating p53 tumor suppressor protein functions (3). Furthermore, CK2 plays a key role in NF-κB activation (4). UV irradiation stimulates CK2-mediated phosphorylation of several carboxy-terminal residues within IκBα, resulting in IκBα proteasomal degradation and the release and nuclear translocation of active NF-κB. CK2 is also dysregulated in many cancers (5) and neurodegenerative diseases such as Alzheimer's and Parkinson's diseases (6). Structurally, CK2 is a multimeric protein complex consisting of two catalytic subunits (α or α') and two regulatory β subunits (7). CK2 is distributed ubiquitously and is apparently constitutively active (7). While cell cycle-dependent Ser-Pro phosphorylation sites have been identified on CK2α and CK2β, Tyr255 phosphorylation by the Src-related kinase c-Fgr seems to have the greatest effect on CK2α activity (8,9).

$262
3 nmol
300 µl
SignalSilence® CK2α siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit CK2α expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: CK2 (formerly called Casein Kinase II) is a highly conserved protein kinase with more than 300 substrates regulating cell growth, cell death, and cell survival. CK2 has been implicated in the response to UV irradiation-induced DNA damage, targeting XRCC1 (1) and BRCA1 (2) as well as regulating p53 tumor suppressor protein functions (3). Furthermore, CK2 plays a key role in NF-κB activation (4). UV irradiation stimulates CK2-mediated phosphorylation of several carboxy-terminal residues within IκBα, resulting in IκBα proteasomal degradation and the release and nuclear translocation of active NF-κB. CK2 is also dysregulated in many cancers (5) and neurodegenerative diseases such as Alzheimer's and Parkinson's diseases (6). Structurally, CK2 is a multimeric protein complex consisting of two catalytic subunits (α or α') and two regulatory β subunits (7). CK2 is distributed ubiquitously and is apparently constitutively active (7). While cell cycle-dependent Ser-Pro phosphorylation sites have been identified on CK2α and CK2β, Tyr255 phosphorylation by the Src-related kinase c-Fgr seems to have the greatest effect on CK2α activity (8,9).

$262
3 nmol
300 µl
SignalSilence® CK2α siRNA I (Rodent Specific) from Cell Signaling Technology (CST) allows the researcher to specifically inhibit CK2α expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Mouse

Background: CK2 (formerly called Casein Kinase II) is a highly conserved protein kinase with more than 300 substrates regulating cell growth, cell death, and cell survival. CK2 has been implicated in the response to UV irradiation-induced DNA damage, targeting XRCC1 (1) and BRCA1 (2) as well as regulating p53 tumor suppressor protein functions (3). Furthermore, CK2 plays a key role in NF-κB activation (4). UV irradiation stimulates CK2-mediated phosphorylation of several carboxy-terminal residues within IκBα, resulting in IκBα proteasomal degradation and the release and nuclear translocation of active NF-κB. CK2 is also dysregulated in many cancers (5) and neurodegenerative diseases such as Alzheimer's and Parkinson's diseases (6). Structurally, CK2 is a multimeric protein complex consisting of two catalytic subunits (α or α') and two regulatory β subunits (7). CK2 is distributed ubiquitously and is apparently constitutively active (7). While cell cycle-dependent Ser-Pro phosphorylation sites have been identified on CK2α and CK2β, Tyr255 phosphorylation by the Src-related kinase c-Fgr seems to have the greatest effect on CK2α activity (8,9).