20% off purchase of 3 or more products* | Learn More >>

Antibody Sampler Kit Blood Vessel Remodeling

The Notch Receptor Interaction Antibody Sampler Kit provides an economical means to evaluate Notch signaling. The kit contains enough primary antibody to perform two western blots per primary.
The Cardiogenesis Marker Antibody Sampler Kit provides an economical means of evaluating proteins involved in heart development. This kit contains enough antibody to perform two western blot experiments per primary antibody.
The Pro-Apoptosis Bcl-2 Family Antibody Sampler Kit provides an economical means to examine several members of the Bcl-2 family and their activation status. The kit contains enough primary and secondary antibodies to perform two Western blot experiments per primary antibody.

Background: The Bcl-2 family consists of a number of evolutionarily conserved proteins containing Bcl-2 homology domains (BH) that regulate apoptosis through control of mitochondrial membrane permeability and release of cytochrome c (1-3). Four BH domains have been identified (BH1-4) that mediate protein interactions. The family can be separated into three groups based upon function and sequence homology: pro-survival members include Bcl-2, Bcl-xL, Mcl-1, A1 and Bcl-w; pro-apoptotic proteins include Bax, Bak and Bok; and "BH3 only" proteins Bad, Bik, Bid, Puma, Bim, Bmf, Noxa and Hrk. Interactions between death-promoting and death-suppressing Bcl-2 family members has led to a rheostat model in which the ratio of pro-apoptotic and anti-apoptotic proteins controls cell fate (4). Thus, pro-survival members exert their behavior by binding to and antagonizing death-promoting members. In general, the "BH3-only members" can bind to and antagonize the pro-survival proteins leading to increased apoptosis (5). While some redundancy of this system likely exists, tissue specificity, transcriptional and post-translational regulation of many of these family members can account for distinct physiological roles.

The Pro-Apoptosis Bcl-2 Family Antibody Sampler Kit II provides an economical means to examine several members of the Bcl-2 family. The kit contains enough primary antibody to perform two western blot experiments.

Background: The Bcl-2 family consists of a number of evolutionarily conserved proteins containing Bcl-2 homology domains (BH) that regulate apoptosis through control of mitochondrial membrane permeability and release of cytochrome c (1-3). Four BH domains have been identified (BH1-4) that mediate protein interactions. The family can be separated into three groups based upon function and sequence homology: pro-survival members include Bcl-2, Bcl-xL, Mcl-1, A1 and Bcl-w; pro-apoptotic proteins include Bax, Bak and Bok; and "BH3 only" proteins Bad, Bik, Bid, Puma, Bim, Bmf, Noxa and Hrk. Interactions between death-promoting and death-suppressing Bcl-2 family members has led to a rheostat model in which the ratio of pro-apoptotic and anti-apoptotic proteins controls cell fate (4). Thus, pro-survival members exert their behavior by binding to and antagonizing death-promoting members. In general, the "BH3-only members" can bind to and antagonize the pro-survival proteins leading to increased apoptosis (5). While some redundancy of this system likely exists, tissue specificity, transcriptional and post-translational regulation of many of these family members can account for distinct physiological roles.

The Tyro/Axl/Mer Activation Sampler Kit provides an economical means of detecting the activation of TAM family members using phospho-specific and control antibodies. The kit includes enough antibodies to perform two western blot experiments with each primary antibody.

Background: Axl, Mer and Tyro3 are three members of the TAM family receptor tyrosine kinase that share a common NCAM (neural adhesion molecule)-related extracellular domain and a conserved intracellular tyrosine kinase domain. These receptors bind common homologous vitamin K dependent protein GAS6 and protein S to activate downstream signaling pathways (1). TAM family receptors are involved in the development of immune, nervous, vascular and reproductive systems, autoimmune disease, cancer drug resistance and tumor immunity response (2-5). Axl (Tyr698), Axl (Tyr702), Mer Tyr(749) and Tyro3 (Tyr681) are conserved autophosphorylation sites located in the activation loop of the respective tyrosine kinase domains. Phosphorylation at these sites is required for full kinase activation of each of the corresponding receptors (6,7).

The Integrin Antibody Sampler Kit provides an economical means to screen samples for α and β subunits of integrin molecules. The kit includes enough primary and secondary antibody to perform two Western blot experiments with each antibody.
The Notch Activated Targets Antibody Sampler Kit provides an economical means of detecting target proteins of activated Notch. The kit contains enough primary antibody to perform four western blot experiments per primary antibody.
The YAP/TAZ Transcriptional Targets Antibody Sampler Kit provides an economical means of detecting proteins whose transcription is subject to regulation by the transcriptional co-activators YAP and/or TAZ. The kit provides enough antibody to perform two western blot experiments with each primary antibody.

Background: YAP and TAZ (WWTR1) are transcriptional co-activators that play a central role in the Hippo Signaling pathway that regulates cell, tissue and organ growth. Under growth conditions, YAP and TAZ are translocated to the nucleus, where they interact with DNA-binding transcription factors (e.g., Transcriptional Enhanced Activation Domain [TEAD] proteins) to regulate the expression of genes that control fundamental aspects of cell function, such as proliferation and cell survival (1). A number of genes have been experimentally confirmed as targets of transcriptional regulation by YAP and TAZ. These include the extracellular matrix proteins CTGF, CYR61, and integrin β2 (2-4), the inhibitor of apoptosis protein (IAP) survivin (5), the mechano-sensitive nuclear envelope protein Lamin B2 (6), and the oncogenic receptor tyrosine kinase Axl (7).

The Microglia LPS-Related Module Antibody Sampler Kit provides an economical means of detecting proteins identified as markers of LPS-related microglial activity by western blot and/or immunofluorescence.

Background: Distinct microglial activation states have been identified using RNA-seq data from a vast array of neurological disease and aging models. These activation states have been categorized into modules corresponding to proliferation, neurodegeneration, interferon-relation, LPS-relation, and many others (1). Previous work identifying markers of specific brain cell types using RNA-seq has shown HS1 and ASC/TMS1 to be useful and specific tools to study microglia (2). HS1 is a protein kinase substrate that is expressed only in tissues and cells of hematopoietic origin (3) and ASC/TMS1 has been found to be a critical component of inflammatory signaling where it associates with and activates caspase-1 in response to pro-inflammatory signals (4).

The Autophagy Antibody Sampler Kit provides an economical means to investigate the molecular machinery of autophagy within the cell. The kit contains enough primary and secondary antibodies to perform two Western blot experiments.

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). Autophagy is generally activated by conditions of nutrient deprivation but has also been associated with a number of physiological processes including development, differentiation, neurodegeneration, infection, and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and referred to as autophagy-related (Atg) genes. Formation of the autophagosome involves a ubiquitin-like conjugation system in which Atg12 is covalently bound to Atg5 and targeted to autophagosome vesicles (4-6). This conjugation reaction is mediated by the ubiquitin E1-like enzyme Atg7 and the E2-like enzyme Atg10 (7,8).

The Microglia Neurodegeneration Module Antibody Sampler Kit provides an economical means of detecting proteins identified as markers of microglial activity during neurodegeneration by western blot and/or immunofluorescence.

Background: Distinct microglial activation states have been identified using RNA-seq data from a vast array of neurological disease and aging models. These activation states have been categorized into modules corresponding to proliferation, neurodegeneration, interferon-relation, LPS-relation, and many others (1). Previous work identifying markers of specific brain cell types using RNA-seq has shown HS1 and ASC/TMS1 to be useful and specific tools to study microglia (2). HS1 is a protein kinase substrate that is expressed only in tissues and cells of hematopoietic origin (3) and ASC/TMS1 has been found to be a critical component of inflammatory signaling where it associates with and activates caspase-1 in response to pro-inflammatory signals (4).

The Autophagy Vesicle Elongation (Atg12 Conjugation) Antibody Sampler Kit provides an economical means of detecting proteins related to autophagy vesicle elongation pathway. The kit contains enough antibody to perform two western blot experiments per primary antibody.
The Microglia Cross Module Antibody Sampler Kit provides an economical means of detecting proteins identified as markers of microglial activity corresponding to proliferation, neurodegeneration, interferon and LPS-relation by western blot and/or immunofluorescence.

Background: Distinct microglial activation states have been identified using RNA-seq data from a vast array of neurological disease and aging models. These activation states have been categorized into modules corresponding to proliferation, neurodegeneration, interferon-relation, LPS-relation, and many others (1). Previous work identifying markers of specific brain cell types using RNA-seq has shown HS1 and ASC/TMS1 to be useful and specific tools to study microglia (2). HS1 is a protein kinase substrate that is expressed only in tissues and cells of hematopoietic origin (3) and ASC/TMS1 has been found to be a critical component of inflammatory signaling where it associates with and activates caspase-1 in response to pro-inflammatory signals (4).

The Matrix Remodeling Antibody Sampler Kit provides an economical means of detecting different MMPs and TIMPs using the specific corresponding antibodies. The kit contains enough antibody to perform at least two western blot experiments with each primary antibody.

Background: Matrix remodeling is mainly controlled by MMPs and TIMPs. The matrix metalloproteinase (MMP) family of proteases are a group of zinc-dependent enzymes that target extracellular proteins, including growth factors, cell surface receptors, adhesion molecules, matrix structural proteins, and other proteases (1, 2). Among the family members, MMP-2, MMP-3, MMP-7, MMP-9, and MMP14 (MT1-MMP) have been characterized as important factors for normal tissue remodeling during embryonic development, wound healing, tumor invasion, angiogenesis, carcinogenesis, and apoptosis (3). MMP activity is regulated by mechanisms of both transcriptional control and post translational protein processing. Once synthesized, MMPs exist as latent proenzymes. Maximum MMP activity requires proteolytic cleavage to generate active MMPs by releasing the inhibitory propeptide domain from the full-length protein (4). MMP activity can be inhibited through its binding to endogenously expressed TIMPs. TIMPs are members of the family of tissue inhibitors of matrix metalloproteinases that include TIMP1, TIMP2, TIMP3, and TIMP4. The main function of TIMPs is their inhibitory effect on MMPs. TIMPs irreversibly inactivate MMPs by direct binding MMPs and chelating their zinc cofactor at the catalytic site to inhibit the proteinase function (5,6).

The Stress and Apoptosis Antibody Sampler Kit provides an economical means of evaluating stress and apoptotic responses of each protein. The kit contains enough primary and secondary antibody to perform two western blot experiments per primary antibody.
The Senescence Marker Antibody Sampler Kit provides an economical means of detecting multiple markers of cellular senescence. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: Senescence is characterized by stable stress-induced proliferative arrest and resistance to mitogenic stimuli, as well as the secretion of proteins such as cytokines, growth factors and proteases. These secreted proteins comprise the senescence-associated secretory phenotype (SASP). Senescent cells are thought to accumulate as an organism ages, and contribute to age-related diseases, including cancer, through promotion of inflammation and disruption of normal cellular function (1,2).Because there is no single biomarker that can be used to definitively identify senescent cells, researchers must rely on a collection of biomarkers commonly associated with senescence. The Senescence Marker Antibody Sampler Kit provides a collection of antibodies to commonly used biomarkers of senescence-associated cell cycle arrest (p16 INK4A, p21 Waf1/Cip1), senescence-associated DNA damage (gamma-Histone H2A.X), and the SASP (HMGB1, IL-6, TNF-alpha, MMP3). The kit also includes an antibody to Lamin B1, which is frequently reduced in senescent cells.

The Pyroptosis Antibody Sampler Kit provides an economical means of detecting proteins that are used as readouts for pyroptosis. The kit includes enough antibodies to perform two western blot experiments with each primary antibody.

Background: Pyroptosis is a regulated pathway of cell death with morphological features of necrosis, including cell swelling, plasma membrane pore formation, and engagement of an inflammatory response with the release of a number of damage-associated molecular patterns (DAMPs) such as HMGB1 and inflammatory cytokines like IL-1β and IL-18 (1,2). Pyroptosis is generally induced in cells of the innate immune system, such as monocytes, marcrophages, and dendritic cells in the presence of pathogen-associated molecular patterns (PAMPs) expressed on microbial pathogens or by cell-derived DAMPs. It is induced through assembly of inflammasomes triggering proteolytic activation of caspase-1 which then cleaves inflammatory cytokines like IL-1β and IL-18 to their mature forms (3). A critical feature of pyroptosis is the cleavage of Gasdermin D by caspase-1 and mouse caspase-11 (or human caspase-4/5) (4-6). Upon cleavage the N-terminal fragment of Gasdermin D oligomerizes to form a pore allowing secretion of inflammatory DAMPs and cytokines. Canonical inflammasome assembly typically consists of a cytosolic-pattern recognition receptor (PPR; a nucleotide binding domain and leucine-rich repeat [NLR] or AIM2-like family members), an adaptor protein (ASC/TMS1), and pro-caspase-1. Distinct inflammasome complexes can recognize distinct PAMPs and DAMPs to trigger pyroptosis. The best characterized pathway triggered by the NLR, NLRP3, occurs through a two-step process. The first step is a priming signal, NF-κB is activated to induce the expression of a number of inflammasome components including NLRP3, pro-IL-1β, and pro-IL-18. In the second activation step, caspase-1 is activated and Gasdermin D and cytokines are proteolytically activated. In a non-canonical pathway, caspase-4 and caspase-5 can directly trigger Gasdermin D cleavage in monocytes following LPS stimulation (5,7).