Microsize antibodies for $99 | Learn More >>

Antibody Sampler Kit Detection of Bacterium

The Human Reactive Inflammasome Antibody Sampler Kit II provides an economical means of detecting multiple inflammasome components. The kit contains enough primary antibodies to perform at least two western blot experiments.

Background: The innate immune system works as the first line of defense in protection from pathogenic microbes and host-derived signals of cellular distress. One way in which these “danger” signals trigger inflammation is through activation of inflammasomes, which are multiprotein complexes that assemble in the cytosol after exposure to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) and result in the activation of caspase-1 and subsequent cleavage of proinflammatory cytokines IL-1β and IL-18 (Reviewed in 1-6). Inflammasome complexes typically consist of a cytosolic pattern recognition receptor (PRR; a nucleotide-binding domain and leucine-rich-repeat [NLR] or AIM2-like receptor [ALR] family member), an adaptor protein (ASC/TMS1), and pro-caspase-1. A number of distinct inflammasome complexes have been identified, each with a unique PRR and activation triggers. The best characterized is the NLRP3 complex, which contains NLRP3, ASC/TMS1, and pro-caspase-1. The NLRP3 inflammasome is activated in a two-step process. First, NF-κB signaling is induced through PAMP- or DAMP-mediated activation of TLR4 or TNFR, resulting in increased expression of NLRP3, pro-IL-1β, and pro-IL-18 (priming step, signal 1). Next, indirect activation of NLRP3 occurs by a multitude of signals (whole pathogens, PAMPs/DAMPs, potassium efflux, lysosomal-damaging environmental factors [uric acid, silica, alum] and endogenous factors [amyloid-β, cholesterol crystals], and mitochondrial damage), leading to complex assembly and activation of caspase-1 (signal 2). The complex inflammasome structure is built via domain interactions among the protein components. Other inflammasomes are activated by more direct means: double-stranded DNA activates the AIM2 complex, anthrax toxin activates NLRP1, and bacterial flagellin activates NLRC4. Activated caspase-1 induces secretion of proinflammatory cytokines IL-1β and -18, but also regulates metabolic enzyme expression, phagosome maturation, vasodilation, and pyroptosis, an inflammatory programmed cell death. Inflammasome signaling contributes to the onset of a number of diseases, including atherosclerosis, type II diabetes, Alzheimer’s disease, and autoimmune disorders.

The Inflammasome Antibody Sampler Kit provides an economical means of detecting multiple inflammasome components. The kit contains enough primary antibodies to perform at least two western blot experiments.

Background: The innate immune system works as the first line of defense in protection from pathogenic microbes and host-derived signals of cellular distress. One way in which these “danger” signals trigger inflammation is through activation of inflammasomes, which are multiprotein complexes that assemble in the cytosol after exposure to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) and result in the activation of caspase-1 and subsequent cleavage of proinflammatory cytokines IL-1β and IL-18 (Reviewed in 1-6). Inflammasome complexes typically consist of a cytosolic pattern recognition receptor (PRR; a nucleotide-binding domain and leucine-rich-repeat [NLR] or AIM2-like receptor [ALR] family member), an adaptor protein (ASC/TMS1), and pro-caspase-1. A number of distinct inflammasome complexes have been identified, each with a unique PRR and activation triggers. The best characterized is the NLRP3 complex, which contains NLRP3, ASC/TMS1, and pro-caspase-1. The NLRP3 inflammasome is activated in a two-step process. First, NF-κB signaling is induced through PAMP- or DAMP-mediated activation of TLR4 or TNFR, resulting in increased expression of NLRP3, pro-IL-1β, and pro-IL-18 (priming step, signal 1). Next, indirect activation of NLRP3 occurs by a multitude of signals (whole pathogens, PAMPs/DAMPs, potassium efflux, lysosomal-damaging environmental factors [uric acid, silica, alum] and endogenous factors [amyloid-β, cholesterol crystals], and mitochondrial damage), leading to complex assembly and activation of caspase-1 (signal 2). The complex inflammasome structure is built via domain interactions among the protein components. Other inflammasomes are activated by more direct means: double-stranded DNA activates the AIM2 complex, anthrax toxin activates NLRP1, and bacterial flagellin activates NLRC4. Activated caspase-1 induces secretion of proinflammatory cytokines IL-1β and -18, but also regulates metabolic enzyme expression, phagosome maturation, vasodilation, and pyroptosis, an inflammatory programmed cell death. Inflammasome signaling contributes to the onset of a number of diseases, including atherosclerosis, type II diabetes, Alzheimer’s disease, and autoimmune disorders.

The Toll-like Receptor Antibody Sampler Kit II provides an economical means of detecting expression of various Toll-like receptors (TLRs). The kit contains enough primary and secondary antibodies to perform at least two western blot experiments.

Background: Members of the Toll-like receptor (TLR) family, named for the closely related Toll receptor in Drosophila, play a pivotal role in innate immune responses (1-4). TLRs recognize conserved motifs found in various pathogens and mediate defense responses (5-7). TLR1, TLR2, TLR4, TLR5, TLR6, and TLR11 are localized to the plasma membrane, while TLR3, TLR7, TLR8, and TLR9 are localized to intracellular membranes including endosomal membranes. Triggering of the TLR pathway leads to the activation of NF-κB and subsequent regulation of immune and inflammatory genes (4). The TLRs and members of the IL-1 receptor family share a conserved stretch of approximately 200 amino acids known as the Toll/Interleukin-1 receptor (TIR) domain (1). Upon activation, TLRs associate with a number of cytoplasmic adaptor proteins containing TIR domains, including myeloid differentiation factor 88 (MyD88), MyD88-adaptor-like/TIR-associated protein (MAL/TIRAP), Toll-receptor-associated activator of interferon (TRIF), and Toll-receptor-associated molecule (TRAM) (8-10). This association leads to the recruitment and activation of IRAK1 and IRAK4, which form a complex with TRAF6 to activate TAK1 and IKK (8,11-14). Activation of IKK leads to the degradation of IκB, which normally maintains NF-κB in an inactive state by sequestering it in the cytoplasm. TLR1 and TLR6 associate with TLR2 to cooperatively mediate response to bacterial lipoproteins and fungal zymosan (6,15). TLR3 is an endosomal TLR that recognizes double-stranded RNA derived from viruses (7). TLR7 and TLR8 recognize single-stranded viral RNA and are also activated by synthetic imidazoquinoline compounds including R-848 (16,17). TLR9 recognizes unmethylated CpG motifs present on bacterial DNA (18).

The Toll-Like Receptor Antibody Sampler Kit is an economical way to examine the total protein levels of a number of toll-like receptors. This kit includes enough primary and secondary antibodies to perform two Western blot experiments with each antibody.

Background: Members of the Toll-like receptor (TLR) family, named for the closely related Toll receptor in Drosophila, play a pivotal role in innate immune responses (1-4). TLRs recognize conserved motifs found in various pathogens and mediate defense responses (5-7). Triggering of the TLR pathway leads to the activation of NF-κB and subsequent regulation of immune and inflammatory genes (4). The TLRs and members of the IL-1 receptor family share a conserved stretch of approximately 200 amino acids known as the Toll/Interleukin-1 receptor (TIR) domain (1). Upon activation, TLRs associate with a number of cytoplasmic adaptor proteins containing TIR domains, including myeloid differentiation factor 88 (MyD88), MyD88-adaptor-like/TIR-associated protein (MAL/TIRAP), Toll-receptor-associated activator of interferon (TRIF), and Toll-receptor-associated molecule (TRAM) (8-10). This association leads to the recruitment and activation of IRAK1 and IRAK4, which form a complex with TRAF6 to activate TAK1 and IKK (8,11-14). Activation of IKK leads to the degradation of IκB, which normally maintains NF-κB in an inactive state by sequestering it in the cytoplasm.

Background: Autophagy is a catabolic process for the autophagosome-lysosomal degradation of bulk cytoplasmic contents (1, 2). Selective autophagy targets the degradation of distinct sets of substrates and organelles (3-5). One of the best studied examples of selective autophagy involves the clearance of damaged mitochondria through a process called mitophagy. Several pathways have been described for various contexts of mitophagy, including the FUNDC1 pathway, the BNIP3 and BNIP3L/Nix pathway, and the PINK1/Parkin pathway. FUNDC1 is a mitochondrial protein that is phosphorylated by the autophagy kinase ULK1 and regulates hypoxia induced mitophagy (6, 7). BNIP3L/Nix and BNIP3 are members of the Bcl-2 family of apoptosis regulators that are expressed on mitochondria, induced by hypoxia, and have have been shown to play a role in mitophagy (8). BNIP3L/Nix is also important in the autophagic maturation of erythroid cells (9). FUNDC1, BNIP3 and BNIP3L/Nix bind to LC3 family members, targeting the mitochondria to the autophagosome.Non-hypoxic induction of mitophagy can be regulated by the PINK1/Parkin pathway, which plays causative roles in neurodegenerative disease, most notably Parkinson’s disease (10, 11). PINK1 is a mitochondrial serine/threonine kinase that is stabilized on the outer mitochondrial membrane of damaged mitochondria. Substrates of PINK1 include the E3 ubiquitin ligase Parkin and ubiquitin itself (12-14). Phosphorylation of Parkin as well as binding to phosphorylated ubiquitin leads to accumulation of ubiquitinated chains on multiple mitochondrial proteins. Ubiquitinated proteins are recognized by selective cargo receptors including SQSTM1/p62, Optineurin, and NDP52 (15-16). Autophagy cargo receptors contain an LC3-interacting region (LIR) required for binding to Atg8/LC3 family members and targeting to the autophagosome (3).

Background: Microglia cells are resident macrophages of the brain that survey the brain environment and dynamically respond to maintain brain homeostasis. Microglial responses include phagocytosis of cellular debris, restricting sites injury or pathology, and/or releasing inflammatory signals to initiate an immune response. Such responses are important during normal development and during diseased states (1).Recently, the role of microglia in neurodegenerative disease pathology, particularly Alzheimer’s disease (AD), has been of intense investigation. Much of this work is driven by human genetic data that links microglia-enriched genes with AD progression (2). The triggering receptor expressed on myeloid cells 2 (TREM2) protein is an innate immune receptor that is expressed on the cell surface of microglia (3). TREM2 plays a role in innate immunity, and a rare functional variant (R47H) of the TREM2 gene is associated with the late-onset risk of AD (3,4). How TREM2 contributes to disease function is currently an active area of research (4,5), but might drive a number of microglial cellular functions ranging from microgliosis, phagocytosis, and cytokine release via a variety of signaling cascades triggered by TREM2.The TREM2 receptor is a single-pass type I membrane glycoprotein that consists of an extracellular immunoglobulin-like domain, a transmembrane domain, and a cytoplasmic tail. Ligands for TREM2 include phospholipids, apolipoproteins, and lipoproteins. Upon activation, TREM2 interacts with the tyrosine kinase-binding protein DNAX-activating protein 12 (DAP12, TYROBP) to form a receptor-signaling complex (6). Ligand binding by DAP12-associated receptors, including TREM2, results in phosphorylation of tyrosine residues within the DAP12 immunoreceptor tyrosine-based activation motif (ITAM) by Src family kinases; ITAM phosphorylation leads to activation of spleen tyrosine kinase (Syk) and downstream signaling cascades (7). Tyr525 and Tyr526 are located in the activation loop of the Syk kinase domain and phosphorylation at these residues (equivalent to Tyr519/520 of mouse Syk) is essential for Syk function (8). Syk phosphorylation is also a readout for β-amyloid triggered TREM2 activity (9). Phosphoinositide-specific phospholipase C γ 1/2 (PLCγ1/2) is reported to be down stream of Syk (10). Tyr352 of Syk is involved in the association of PLCγ1 (11); Syk-mediated phosphorylation PLCγ1 at Tyr783 activates PLCγ1 enzymatic activity (12). Interestingly, mutations in the microglia-enriched PLCγ2 gene are associated with AD (13,14,15).