Microsize antibodies for $99 | Learn More >>

Antibody Sampler Kit Protein Tetramerization

The Phospho-Insulin/IGF Receptor Antibody Sampler Kit provides an economical means of evaluating total Insulin Receptor and IGF-I Receptor β protein levels as well as Insulin and IGF-I Receptor β phosphorylated at specific sites. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: Type I insulin-like growth factor receptor (IGF-IR) is a transmembrane receptor tyrosine kinase that is widely expressed in many cell lines and cell types within fetal and postnatal tissues (1-3). Receptor autophosphorylation follows binding of the IGF-I and IGF-II ligands. Three tyrosine residues within the kinase domain (Tyr1131, Tyr1135, and Tyr1136) are the earliest major autophosphorylation sites (4). Phosphorylation of these three tyrosine residues is necessary for kinase activation (5,6). Insulin receptors (IRs) share significant structural and functional similarity with IGF-I receptors, including the presence of an equivalent tyrosine cluster (Tyr1146/1150/1151) within the kinase domain activation loop. Tyrosine autophosphorylation of IRs is one of the earliest cellular responses to insulin stimulation (7). Autophosphorylation begins with phosphorylation at Tyr1146 and either Tyr1150 or Tyr1151, while full kinase activation requires triple tyrosine phosphorylation (8).

The Silent Synapses Antibody Sampler Kit provides an economical means of detecting the activation of AMPA-type glutamate receptors (AMPAR) using phospho-specific and control antibodies. AMPARs expression can be compared to other synaptic components including NMDA-type glutamate receptor subunit GluN1 and the synaptic scaffolding protein PSD95. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: AMPA- (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), kainate-, and NMDA- (N-methyl-D-aspartate) receptors are the three main families of ionotropic glutamate-gated ion channels. AMPA receptors (AMPARs) are composed of four subunits (GluA1-4), which assemble as homo- or hetero-tetramers to mediate the majority of fast excitatory transmissions in the central nervous system. AMPARs are implicated in synapse formation, stabilization, and plasticity (1). In contrast to GluA2-containing AMPARs, AMPARs that lack GluA2 are permeable to calcium (2). Post-transcriptional modifications (alternative splicing, nuclear RNA editing) and post-translational modifications (glycosylation, phosphorylation) result in a very large number of permutations, fine-tuning the kinetic properties and surface expression of AMPARs representing key pathways to mediate synaptic plasticity (3). During development and mature states, some synapses exhibit “silent synapses” that lack functional AMPAR-mediated transmission. Synapses become “unsilenced” by post-translational modification of GluAs, particularly GluA1, which alters its kinetic properties and/or surface expression while other synaptic components, such as other glutamate receptors like NMDARs and postsynaptic scaffolding proteins like PSD95, remain unaltered. Conversely, reducing the AMPAR kinetic properties and surface expression can silence synapses. Key post-translational modifications implicated in regulating these processes include phosphorylation of GluA1 at Ser831 and Ser845 (4). Research studies have implicated activity-dependent changes in AMPARs in a variety of diseases, including Alzheimer’s, amyotrophic lateral sclerosis (ALS), stroke, and epilepsy (1).

The Insulin/IGF-1 Signaling Pathway Antibody Sampler Kit provides an economical means of detecting select components involved in the insulin and/or IGF-1 signaling pathways. The kit contains enough primary antibodies to perform at least two western blot experiments per antibody.

Background: Insulin and IGF-1 act on two closely related tyrosine kinase receptors to initiate a cascade of signaling events. These signaling events activate a variety of biological molecules, including kinases and transcription factors, which regulate cell growth, survival and metabolism.Type I insulin-like growth factor receptor (IGF-IR) is a transmembrane receptor tyrosine kinase that is widely expressed in many cell lines and cell types within fetal and postnatal tissues (1-3). Three tyrosine residues within the kinase domain (Tyr1131, Tyr1135, and Tyr1136) are the earliest major autophosphorylation sites (4). Phosphorylation of these three tyrosine residues is necessary for kinase activation (5,6). Insulin receptors (IRs) share significant structural and functional similarity with IGF-I receptors, including the presence of an equivalent tyrosine cluster (Tyr1146/1150/1151) within the kinase domain activation loop. Tyrosine autophosphorylation of IRs is one of the earliest cellular responses to insulin stimulation (7). Autophosphorylation begins with phosphorylation at Tyr1146 and either Tyr1150 or Tyr1151, while full kinase activation requires triple tyrosine phosphorylation (8).Akt, also referred to as PKB or Rac, plays a critical role in controlling survival and apoptosis (9-11). This protein kinase is activated by insulin and various growth and survival factors to function in a wortmannin-sensitive pathway involving PI3 kinase (10,11). Akt is activated by phospholipid binding and activation loop phosphorylation at Thr308 by PDK1 (12) and by phosphorylation within the carboxy terminus at Ser473. The previously elusive PDK2 responsible for phosphorylation of Akt at Ser473 has been identified as mammalian target of rapamycin (mTOR) in a rapamycin-insensitive complex with rictor and Sin1 (13,14).Tuberin is a product of the TSC2 tumor suppressor gene and an important regulator of cell proliferation and tumor development (15). Tuberin is phosphorylated on Ser939 and Thr1462 in response to PI3K activation and the human TSC complex is a direct biochemical target of the PI3K/Akt pathway (16). This result complements Drosophila genetics studies suggesting the possible involvement of the tuberin-hamartin complex in the PI3K/Akt mediated insulin pathway (17-19).The mammalian target of rapamycin (mTOR, FRAP, RAFT) is a Ser/Thr protein kinase (20-22) that functions as an ATP and amino acid sensor to balance nutrient availability and cell growth (23,24). When sufficient nutrients are available, mTOR responds to a phosphatidic acid-mediated signal to transmit a positive signal to p70 S6 kinase and participate in the inactivation of the eIF4E inhibitor, 4E-BP1 (25). These events result in the translation of specific mRNA subpopulations. mTOR is phosphorylated at Ser2448 via the PI3 kinase/Akt signaling pathway and autophosphorylated at Ser2481 (26,27).The Forkhead family of transcription factors is involved in tumorigenesis of rhabdomyosarcoma and acute leukemias (28-30). Within the family, three members (FoxO1, FoxO4, and FoxO3a) have sequence similarity to the nematode orthologue DAF-16, which mediates signaling via a pathway involving IGFR1, PI3K, and Akt (31-33). Active forkhead members act as tumor suppressors by promoting cell cycle arrest and apoptosis. Increased proliferation results when forkhead transcription factors are inactivated through phosphorylation by Akt at Thr24, Ser256, and Ser319, which results in nuclear export and inhibition of transcription factor activity (34).Glycogen synthase kinase-3 (GSK-3) was initially identified as an enzyme that regulates glycogen synthesis in response to insulin (35). GSK-3 is a critical downstream element of the PI3K/Akt cell survival pathway whose activity can be inhibited by Akt-mediated phosphorylation at Ser21 of GSK-3α and Ser9 of GSK-3β (36,37).

The One-Carbon Metabolism Antibody Sampler Kit provides an economical means of detecting select components involved in one-carbon metabolism pathway. The kit contains enough primary antibodies to perform at least two western blot experiments per antibody.

Background: One-carbon metabolism includes various enzymatic reactions involving the transfer of one-carbon groups mediated by folate cofactor (1). The activated one-carbon groups are used by various metabolic pathways, including purine synthesis, thymidine synthesis, and remethylation of homocysteine to methionine (1). S-adenosylhomocysteine hydrolase-like protein 1 (AHCYL1) is a member of the S-adenosylhomocysteine hydrolase family, which participates in the metabolism of S-adenosyl-L-homocysteine (2). Cystathionine beta-synthase (CBS) is a key enzyme involved in sulfur amino acid metabolism as it catalyzes the formation of cystathionine from serine and homocysteine (3,4). Cystathionine γ-lyase (CGL) is an enzyme in the transsulfuration pathway, a route in the metabolism of sulfur-containing amino acids (5). Methylenetetrahydrofolate reductase (MTHFR), a key enzyme in one-carbon metabolism, catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate (1). 5-methyltetrahydrofolate donates its methyl group for remethylation of homocysteine to methionine (1). Methionine is further converted to S-adenosylmethionine (SAM), a major reactive methyl carrier (1). NADP+ dependent methylenetetrahydrofolate dehydrogenase 1-like (MTHFD1L) is a mitochondrial enzyme that catalyzes the production of formate from 10-formyl-tetrahydrofolate in one-carbon flow from mitochondria to cytoplasm (6,7). MTHFD2 is a bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase involved in mitochondrial folate metabolism (8). Serine hydroxymethyltransferase 1 (SHMT1) is a cytoplasmic serine hydroxylmethyltransferase (9,10). It catalyzes the conversion of serine to glycine with the transfer of β-carbon from serine to tetrahydrofolate (THF) to form 5, 10-methylene-THF (9, 10). The methylation of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP) is an essential step in the formation of thymine nucleotides, a process catalyzed by thymidylate synthase (TS or TYMS) (11-13).

The p53 Antibody Sampler Kit provides an economical means of detecting p53 activity using modification-specific and control antibodies. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: The p53 tumor suppressor protein plays a major role in cellular response to DNA damage and other genomic aberrations. Activation of p53 can lead to either cell cycle arrest and DNA repair or apoptosis (1). p53 is phosphorylated at multiple sites in vivo and by several different protein kinases in vitro (2,3). DNA damage induces phosphorylation of p53 at Ser15 and Ser20 and leads to a reduced interaction between p53 and its negative regulator, the oncoprotein MDM2 (4). MDM2 inhibits p53 accumulation by targeting it for ubiquitination and proteasomal degradation (5,6). p53 can be phosphorylated by ATM, ATR, and DNA-PK at Ser15 and Ser37. Phosphorylation impairs the ability of MDM2 to bind p53, promoting both the accumulation and activation of p53 in response to DNA damage (4,7). Chk2 and Chk1 can phosphorylate p53 at Ser20, enhancing its tetramerization, stability, and activity (8,9). p53 is phosphorylated at Ser392 in vivo (10,11) and by CAK in vitro (11). Phosphorylation of p53 at Ser392 is increased in human tumors (12) and has been reported to influence the growth suppressor function, DNA binding, and transcriptional activation of p53 (10,13,14). p53 is phosphorylated at Ser6 and Ser9 by CK1δ and CK1ε both in vitro and in vivo (13,15). Phosphorylation of p53 at Ser46 regulates the ability of p53 to induce apoptosis (16). Acetylation of p53 is mediated by p300 and CBP acetyltransferases. Inhibition of deacetylation suppressing MDM2 from recruiting HDAC1 complex by p19 (ARF) stabilizes p53. Acetylation appears to play a positive role in the accumulation of p53 protein in stress response (17). Following DNA damage, human p53 becomes acetylated at Lys382 (Lys379 in mouse) in vivo to enhance p53-DNA binding (18). Deacetylation of p53 occurs through interaction with the SIRT1 protein, a deacetylase that may be involved in cellular aging and the DNA damage response (19).

The Stress and Apoptosis Antibody Sampler Kit provides an economical means of evaluating stress and apoptotic responses of each protein. The kit contains enough primary and secondary antibody to perform two western blot experiments per primary antibody.
The Tricarboxylic Acid Cycle Sampler Kit provides an economical means of detecting select components involved in tricarboxylic acid cycle. The kit contains enough primary antibodies to perform at least two western blot experiments per antibody.

Background: The tricarboxylic acid (TCA) cycle includes various enzymatic reactions that constitute a key part of cellular aerobic respiration. The transport of the glycolytic end product pyruvate into mitochondria and the decarboxylation of pyruvate in the TCA cycle generate energy through oxidative phosphorylation under aerobic conditions (1,2). Two inner mitochondrial membrane proteins, mitochondrial pyruvate carrier 1 (MPC1) and mitochondrial pyruvate carrier 2 (MPC2), form a 150 kDa complex and are essential proteins in the facilitated transport of pyruvate into mitochondria (1,2). Citrate synthase catalyzes the first and rate-limiting reaction of the TCA cycle (3). Mitochondrial aconitase 2 (ACO2) catalyzes the conversion of citrate to isocitrate via cis-aconitate (4). IDH1 and IDH2 are two of the three isocitrate dehydrogenases that catalyze oxidative decarboxylation of isocitrate to α-ketoglutarate (α-KG) (5). IDH1 functions as a tumor suppressor in the cytoplasm and peroxisomes, whereas IDH2 is in mitochondria and is involved in the TCA cycle (5). Mutations in IDH2 have also been identified in malignant gliomas (6). Dihydrolipoamide succinyltransferase (DLST) is a subunit of the α-ketoglutarate dehydrogenase complex, a key enzymatic complex in the TCA cycle (7). Succinate dehydrogenase subunit A (SDHA) is a component of the TCA cycle and the electron transport chain and is involved in the oxidation of succinate (8). Fumarase catalyzes the conversion of fumarate to malate (9). Fumarase deficiency leads to the accumulation of fumarate, an oncometabolite that has been shown to promote epithelial-to-mesenchymal-transition (EMT), a developmental process that has been implicated in oncogenesis (10).

Senescence Associated Secretory Phenotype (SASP) Antibody Sampler Kit provides an economical means of detecting multiple components of the SASP. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: Senescence is characterized by stable stress-induced proliferative arrest and resistance to mitogenic stimuli, as well as the secretion of proteins such as cytokines, growth factors and proteases. These secreted proteins comprise the senescence-associated secretory phenotype (SASP). Senescent cells are thought to accumulate as an organism ages, and contribute to age-related diseases, including cancer, through promotion of inflammation and disruption of normal cellular function (1,2). The composition of the SASP varies, and SASP components can be either beneficial or deleterious in human disease, depending on the context (3).Senescence Associated Secretory Phenotype (SASP) Antibody Sampler Kit provides a collection of antibodies to various SASP components, including TNF-alpha, interleukin-6 (IL-6), the multifunctional cytokine IL-1beta, the chemokines CXCL10, RANTES/CCL5 and MCP-1, the matrix metalloprotease MMP3, and the serine-protease inhibitor PAI-1.

The Cell Cycle/Checkpoint Antibody Sampler Kit provides a fast and economical means of evaluating multiple proteins involved in the cell cyle and checkpoint control. The kit contains enough primary and secondary antibody to perform four Western blot experiments.

Background: The cell division cycle demands accuracy to avoid the accumulation of genetic damage. This process is controlled by molecular circuits called "checkpoints" that are common to all eukaryotic cells (1). Checkpoints monitor DNA integrity and cell growth prior to replication and division at the G1/S and G2/M transitions, respectively. The cdc2-cyclin B kinase is pivotal in regulating the G2/M transition (2,3). Cdc2 is phosphorylated at Thr14 and Tyr15 during G2-phase by the kinases Wee1 and Myt1, rendering it inactive. The tumor suppressor protein retinoblastoma (Rb) controls progression through the late G1 restriction point (R) and is a major regulator of the G1/S transition (4). During early and mid G1-phase, Rb binds to and represses the transcription factor E2F (5). The phosphorylation of Rb late in G1-phase by CDKs induces Rb to dissociate from E2F, permitting the transcription of S-phase-promoting genes. In vitro, Rb can be phosphorylated at multiple sites by cdc2, cdk2, and cdk4/6 (6-8). DNA damage triggers both the G2/M and the G1/S checkpoints. DNA damage activates the DNA-PK/ATM/ATR kinases, which phosphorylate Chk at Ser345 (9), Chk2 at Thr68 (10) and p53 (11). The Chk kinases inactivate cdc25 via phosphorylation at Ser216, blocking the activation of cdc2.

The Huntingtin Interaction Antibody Sampler kit provides an economical means of detecting transcription-related proteins that interact with Huntingtin (Htt). This kit contains enough antibody to perform two western blot experiments per primary antibody.