20% off purchase of 3 or more products* | Learn More >>

Antibody Sampler Kit Regulation of Chondrocyte Differentiation

Also showing Antibody Sampler Kit Negative Regulation of Chondrocyte Differentiation, Antibody Sampler Kit Positive Regulation of Chondrocyte Differentiation

The YAP/TAZ Transcriptional Targets Antibody Sampler Kit provides an economical means of detecting proteins whose transcription is subject to regulation by the transcriptional co-activators YAP and/or TAZ. The kit provides enough antibody to perform two western blot experiments with each primary antibody.

Background: YAP and TAZ (WWTR1) are transcriptional co-activators that play a central role in the Hippo Signaling pathway that regulates cell, tissue and organ growth. Under growth conditions, YAP and TAZ are translocated to the nucleus, where they interact with DNA-binding transcription factors (e.g., Transcriptional Enhanced Activation Domain [TEAD] proteins) to regulate the expression of genes that control fundamental aspects of cell function, such as proliferation and cell survival (1). A number of genes have been experimentally confirmed as targets of transcriptional regulation by YAP and TAZ. These include the extracellular matrix proteins CTGF, CYR61, and integrin β2 (2-4), the inhibitor of apoptosis protein (IAP) survivin (5), the mechano-sensitive nuclear envelope protein Lamin B2 (6), and the oncogenic receptor tyrosine kinase Axl (7).

The NF-κB Pathway Sampler Kit contains reagents to examine the activation state and total protein levels of key proteins in the NF-κB pathway: IKKα, IKKβ, NF-κB p65/RelA and IκBα. The kit contains enough primary and secondary antibodies to perform two Western blot experiments per primary antibody.

Background: The transcriptional nuclear factor κB (NF-κB)/Rel transcription factors are present in the cytosol in an inactive state, complexed with the inhibitory IκB proteins. Activation occurs via phosphorylation of IκBα at Ser32 and Ser36, resulting in the ubiquitin-mediated proteasome-dependent degradation of IκBα and the release and nuclear translocation of active NF-κB dimers. The regulation of IκBβ and IκBε is similar to that of IκBα, however, the phosphorylation and degradation of these proteins occurs with much slower kinetics. Phosphorylation of IκBβ occurs at Ser/Thr19 and Ser23, while IκBε can be phosphorylated at Ser18 and Ser22. The key regulatory step in this pathway involves activation of a high molecular weight IkappaB kinase (IKK) complex, consisting of three tightly associated IKK subunits. IKKα and IKKβ serve as the catalytic subunits of the kinase. Activation of IKK depends on phosphorylation at Ser177 and Ser181 in the activation loop of IKKβ (176 and 180 in IKKα). NF-κB-inducing kinase (NIK), TANK-binding kinase 1 (TBK1), and its homolog IKKε (IKKi), phosphorylate and activate IKKα and IKKβ.

The β-Catenin Antibody Sampler Kit provides an economical means of detecting total β-catenin as well as β-catenin phosphorlylated at various residues. The kit contains enough primary and secondary antibody to perform two Western blots with each antibody.

Background: β-Catenin is a key downstream effector in the Wnt signaling pathway (1). It is implicated in two major biological processes in vertebrates: early embryonic development (2) and tumorigenesis (3). CK1 phosphorylates β-catenin at Ser45. This phosphorylation event primes β-catenin for subsequent phosphorylation by GSK-3β (4-6). GSK-3β destabilizes β-catenin by phosphorylating it at Ser33, Ser37, and Thr41 (7). Mutations at these sites result in the stabilization of β-catenin protein levels and have been found in many tumor cell lines (8).

The NF-κB p65 Antibody Sampler Kit contains reagents to examine NF-κB p65/RelA phosphorylation at Ser468 and Ser536; acetylation at Lys310; and total p65 levels.

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

The Nuclear Receptor Antibody Sampler Kit provides an economical means to evaluate the presence and status of nuclear receptors. This kit contains enough primary antibody to perform two western blots per primary.
This Cadherin-Catenin Antibody Sampler kit contains reagents to examine the total protein levels of key proteins found in cell-cell adherens junctions. The kit contains enough primary and secondary antibodies to perform two Western blot experiments.
This kit contains reagents to examine total protein levels of the five NF-κB/Rel family members: p65/RelA, RelB, c-Rel, NF-κB1 (p105/p50) and NF-κB2 (p100/p52).

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

The Retinoic Acid and Retinoid X Receptors Antibody Sampler Kit provides an economical means to investigate the expression of various subtypes of retinoic acid and retinoid X receptors. The kit contains enough primary antibody to perform two western blot experiments per primary.
The NF-κB Family Antibody Sampler Kit II provides an economical means of detecting members of the NF-κB family. The kit includes enough antibody to perform two western blots with each primary antibody.

Background: Transcription factors of the nuclear factor κB (NF-κB)/Rel family play a pivotal role in inflammatory and immune responses (1,2). There are five family members in mammals: RelA, c-Rel, RelB, NF-κB1 (p105/p50), and NF-κB2 (p100/p52). Both p105 and p100 are proteolytically processed by the proteasome to produce p50 and p52, respectively. Rel proteins bind p50 and p52 to form dimeric complexes that bind DNA and regulate transcription. In unstimulated cells, NF-κB is sequestered in the cytoplasm by IκB inhibitory proteins (3-5). NF-κB-activating agents can induce the phosphorylation of IκB proteins, targeting them for rapid degradation through the ubiquitin-proteasome pathway and releasing NF-κB to enter the nucleus where it regulates gene expression (6-8). NIK and IKKα (IKK1) regulate the phosphorylation and processing of NF-κB2 (p100) to produce p52, which translocates to the nucleus (9-11).

The Stress and Apoptosis Antibody Sampler Kit provides an economical means of evaluating stress and apoptotic responses of each protein. The kit contains enough primary and secondary antibody to perform two western blot experiments per primary antibody.
The Phospho-p38 MAPK Pathway Sampler Kit provides an economical means to evaluate the activation status of multiple members of the p38 MAPK pathway, including phosphorylated MSK1, p38 MAPK, MKK3/MKK6, ATF-2, HSP27 and MAPKAPK-2. The kit includes enough primary and secondary antibodies to perform two Western blot experiments.

Background: p38 MAP kinase (MAPK), also called RK (1) or CSBP (2), is the mammalian orthologue of the yeast HOG kinase that participates in a signaling cascade controlling cellular responses to cytokines and stress (1-4). Four isoforms of p38 MAPK, p38α, β, γ (also known as Erk6 or SAPK3), and δ (also known as SAPK4) have been identified. Similar to the SAPK/JNK pathway, p38 MAPK is activated by a variety of cellular stresses including osmotic shock, inflammatory cytokines, lipopolysaccharide (LPS), UV light, and growth factors (1-5). MKK3, MKK6, and SEK activate p38 MAPK by phosphorylation at Thr180 and Tyr182. Activated p38 MAPK has been shown to phosphorylate and activate MAPKAP kinase 2 (3) and to phosphorylate the transcription factors ATF-2 (5), Max (6), and MEF2 (5-8). SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-imidazole) is a selective inhibitor of p38 MAPK. This compound inhibits the activation of MAPKAPK-2 by p38 MAPK and subsequent phosphorylation of HSP27 (9). SB203580 inhibits p38 MAPK catalytic activity by binding to the ATP-binding pocket, but does not inhibit phosphorylation of p38 MAPK by upstream kinases (10).

The Angiogenesis Antibody Sampler Kit provides an economical means to investigate the angiogenic pathway downstream of VEGFR2. The kit contains enough primary antibody to perform two western blots per primary antibody.
The p38 MAPK Isoform Activation Antibody Sampler Kit provides an economical means to evaluate the activation status of individual isoforms of p38 MAPK through immunoprecipitation of the phosphorylated p38 MAPK followed by western blot using isoform specific antibodies. The kit includes enough primary and secondary antibodies to perform two IP/western blot experiments.

Background: p38 MAP kinase (MAPK), also called RK (1) or CSBP (2), is the mammalian orthologue of the yeast HOG kinase that participates in a signaling cascade controlling cellular responses to cytokines and stress (1-4). Four isoforms of p38 MAPK, p38α, β, γ (also known as Erk6 or SAPK3), and δ (also known as SAPK4) have been identified. Similar to the SAPK/JNK pathway, p38 MAPK is activated by a variety of cellular stresses including osmotic shock, inflammatory cytokines, lipopolysaccharide (LPS), UV light, and growth factors (1-5). MKK3, MKK6, and SEK activate p38 MAPK by phosphorylation at Thr180 and Tyr182. Activated p38 MAPK has been shown to phosphorylate and activate MAPKAP kinase 2 (3) and to phosphorylate the transcription factors ATF-2 (5), Max (6), and MEF2 (5-8). SB203580 (4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)-imidazole) is a selective inhibitor of p38 MAPK. This compound inhibits the activation of MAPKAPK-2 by p38 MAPK and subsequent phosphorylation of HSP27 (9). SB203580 inhibits p38 MAPK catalytic activity by binding to the ATP-binding pocket, but does not inhibit phosphorylation of p38 MAPK by upstream kinases (10).

The Phospho-MAPK Family Antibody Sampler Kit provides an economical means of evaluating the phosphorylation state of p38, p44/42, and SAPK/JNK mitogen-activated protein kinases. The kit contains enough primary and secondary antibodies to perform two western blot experiments.

Background: p44/42 MAPK (Erk1/2), SAPK/JNK, and p38 MAPK function in protein kinase cascades that play a critical role in the regulation of cell growth, differentiation, and control of cellular responses to cytokines and stress. p44/42 MAPK is activated by growth and neurotrophic factors. Activation occurs through phosphorylation of threonine and tyrosine residues (Thr202 and Tyr204 in human Erk1) at the sequence T*EY* by a single upstream MAP kinase kinase (MEK). SAPK/JNK and p38 MAPK are activated by inflammatory cytokines and by a wide variety of cellular stresses. Activation of SAPK/JNK occurs via phosphorylation at Thr183 and Tyr185 by the dual specificity enzyme SEK/MKK4. Both MKK3 and SEK phosphorylate p38 MAPK on tyrosine and threonine at the sequence T*GY* to activate p38 MAP kinase (1-5).

The MAPK Family Antibody Sampler Kit provides an economical means of evaluating total levels of p38, p44/42, and SAPK/JNK mitogen-activated protein kinases. The kit contains enough primary and secondary antibody to perform two western blot experiments.

Background: p44/42 MAPK (Erk1/2), SAPK/JNK, and p38 MAPK function in protein kinase cascades that play a critical role in the regulation of cell growth, differentiation, and control of cellular responses to cytokines and stress. p44/42 MAPK is activated by growth and neurotrophic factors. Activation occurs through phosphorylation of threonine and tyrosine residues (Thr202 and Tyr204 in human Erk1) at the sequence T*EY* by a single upstream MAP kinase kinase (MEK). SAPK/JNK and p38 MAPK are activated by inflammatory cytokines and by a wide variety of cellular stresses. Activation of SAPK/JNK occurs via phosphorylation at Thr183 and Tyr185 by the dual specificity enzyme SEK/MKK4. Both MKK3 and SEK phosphorylate p38 MAPK on tyrosine and threonine at the sequence T*GY* to activate p38 MAP kinase (1-5).

The ER Stress Sampler Kit contains reagents to investigate ER stress within the cell. The kit contains enough primary and secondary antibodies to perform two Western blot experiments per primary antibody.
The Receptor Tyrosine Kinase Antibody Sampler Kit provides the means to detect a broad range of common receptor tyrosine kinases, as well as total phospho-tyrosine activity. The kit provides enough antibody to perform two western blot experiments with each primary antibody.
The Wnt Signaling Antibody Sampler Kit provides an economical means of detecting integral proteins within the Wnt signaling pathway. The kit contains enough primary and secondary antibody to perform two Western blots with each.
The Cardiogenesis Marker Antibody Sampler Kit provides an economical means of evaluating proteins involved in heart development. This kit contains enough antibody to perform two western blot experiments per primary antibody.