Microsize antibodies for $99 | Learn More >>

Antibody Sampler Kit Regulation of T Cell Activation

The ALK Activation Antibody Sampler Kit provides an economical means to evaluate the activation status of multiple members of the ALK pathway, including phosphorylated ALK, Jak2, Jak3, Stat3, Stat5, PLCγ1, Akt, Src, and p44/42 MAPK. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor for pleiotrophin (PTN), a growth factor involved in embryonic brain development (1-3). In ALK-expressing cells, PTN induces phosphorylation of both ALK and the downstream effectors IRS-1, Shc, PLCγ, and PI3 kinase (1). ALK was originally discovered as a nucleophosmin (NPM)-ALK fusion protein produced by a translocation (4). Investigators have found that the NPM-ALK fusion protein is a constitutively active, oncogenic tyrosine kinase associated with anaplastic lymphoma (4). Research literature suggests that activation of PLCγ by NPM-ALK may be a crucial step for its mitogenic activity and involved in the pathogenesis of anaplastic lymphomas (5).A distinct ALK oncogenic fusion protein involving ALK and echinoderm microtubule-associated protein like 4 (EML4) has been described in the research literature from a non-small cell lung cancer (NSCLC) cell line, with corresponding fusion transcripts present in some cases of lung adenocarcinoma. The short, amino-terminal region of the microtubule-associated protein EML4 is fused to the kinase domain of ALK (6-8).

The DUB Antibody Sampler Kit offers an economical means of evaluating the presence and status of selected DUB enzymes. This kit contains enough primary antibody to perform two western blot experiments per primary.
The Src Family Antibody Sampler Kit provides an economical means of evaluating total levels of Src family member proteins. The kit contains enough primary and secondary antibody to perform two western blots with each antibody.

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

The Death Receptor Antibody Sampler Kit II provides an economical means to investigate members of the death receptor family. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: The tumor necrosis factor receptor family, which includes TNF-RI, TNF-R2, Fas, DR3, DR4, DR5, and DR6, plays an important role in the regulation of apoptosis in various physiological systems (1,2). The receptors are activated by a family of cytokines that include TNF, FasL, TWEAK, and TRAIL. They are characterized by a highly conserved extracellular region containing cysteine-rich repeats and a conserved intracellular region of about 80 amino acids termed the death domain (DD). The DD is important for transducing the death signal by recruiting other DD containing adaptor proteins (FADD, TRADD, RIP) to the death-inducing signaling complex (DISC) resulting in activation of caspases. The two receptors for TNF-α, TNF-R1 (55 kDa) and TNF-R2 (75 kDa) can mediate distinct cellular responses (3,4). In most cases cytotoxicity elicited by TNF has been reported to act through TNF-R1 (5,6). DR3/WSL-1/Apo-3/TRAMP/LARD is a TNFR family member containing the characteristic extracellular cysteine-repeats, transmembrane region, and an intracellular DD (7-11). DR3 is activated by its ligand Apo-3L/TWEAK to induce apoptosis and activation of NF-κB (12,13). Like TNF-R1, DR3 binds to the DD adaptor protein TRADD, which can then associate with other DD proteins like FADD and RIP as well as members of the TRAF family (7,8). Tissue expression of DR3 is very restricted, primarily seen on the surface of activated thymocytes and lymphocytes and plays an important role in thymocyte negative selection (7,8,14). Studies have also indicated an association with DR3 and rheumatoid arthritis (15,16). DR4 (TRAIL-RI, TNFRSF10A) and DR5 (TRAIL-R2, TNFRSF10B) are receptors for the cytokine TRAIL. Both receptors contain death domains that recruit DISC complexes triggering caspase activation and apoptosis (17-20). DR6, also known as TNFRSF21, is a TNFR family member able to induce apoptosis as well as activation of NF-κB and JNK (21). DR6 appears to play a critical role in the activation and differentiation of T and B lymphocytes (22,23). In the nervous system, β-amyloid precursor protein (APP) activates DR6 to trigger neuronal degeneration (24).

The Angiogenesis Antibody Sampler Kit provides an economical means to investigate the angiogenic pathway downstream of VEGFR2. The kit contains enough primary antibody to perform two western blots per primary antibody.
The Human T Cell Co-inhibitory and Co-stimulatory Receptor IHC Antibody Sampler Kit provides an economical means of detecting expression of receptors that modulate T cell activity in formalin-fixed, paraffin-embedded tissue samples.
The Human Reactive Inflammasome Antibody Sampler Kit II provides an economical means of detecting multiple inflammasome components. The kit contains enough primary antibodies to perform at least two western blot experiments.

Background: The innate immune system works as the first line of defense in protection from pathogenic microbes and host-derived signals of cellular distress. One way in which these “danger” signals trigger inflammation is through activation of inflammasomes, which are multiprotein complexes that assemble in the cytosol after exposure to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) and result in the activation of caspase-1 and subsequent cleavage of proinflammatory cytokines IL-1β and IL-18 (Reviewed in 1-6). Inflammasome complexes typically consist of a cytosolic pattern recognition receptor (PRR; a nucleotide-binding domain and leucine-rich-repeat [NLR] or AIM2-like receptor [ALR] family member), an adaptor protein (ASC/TMS1), and pro-caspase-1. A number of distinct inflammasome complexes have been identified, each with a unique PRR and activation triggers. The best characterized is the NLRP3 complex, which contains NLRP3, ASC/TMS1, and pro-caspase-1. The NLRP3 inflammasome is activated in a two-step process. First, NF-κB signaling is induced through PAMP- or DAMP-mediated activation of TLR4 or TNFR, resulting in increased expression of NLRP3, pro-IL-1β, and pro-IL-18 (priming step, signal 1). Next, indirect activation of NLRP3 occurs by a multitude of signals (whole pathogens, PAMPs/DAMPs, potassium efflux, lysosomal-damaging environmental factors [uric acid, silica, alum] and endogenous factors [amyloid-β, cholesterol crystals], and mitochondrial damage), leading to complex assembly and activation of caspase-1 (signal 2). The complex inflammasome structure is built via domain interactions among the protein components. Other inflammasomes are activated by more direct means: double-stranded DNA activates the AIM2 complex, anthrax toxin activates NLRP1, and bacterial flagellin activates NLRC4. Activated caspase-1 induces secretion of proinflammatory cytokines IL-1β and -18, but also regulates metabolic enzyme expression, phagosome maturation, vasodilation, and pyroptosis, an inflammatory programmed cell death. Inflammasome signaling contributes to the onset of a number of diseases, including atherosclerosis, type II diabetes, Alzheimer’s disease, and autoimmune disorders.

The Microglia LPS-Related Module Antibody Sampler Kit provides an economical means of detecting proteins identified as markers of LPS-related microglial activity by western blot and/or immunofluorescence.

Background: Distinct microglial activation states have been identified using RNA-seq data from a vast array of neurological disease and aging models. These activation states have been categorized into modules corresponding to proliferation, neurodegeneration, interferon-relation, LPS-relation, and many others (1). Previous work identifying markers of specific brain cell types using RNA-seq has shown HS1 and ASC/TMS1 to be useful and specific tools to study microglia (2). HS1 is a protein kinase substrate that is expressed only in tissues and cells of hematopoietic origin (3) and ASC/TMS1 has been found to be a critical component of inflammatory signaling where it associates with and activates caspase-1 in response to pro-inflammatory signals (4).

The Mouse Reactive Inflammasome Antibody Sampler Kit provides an economical means of detecting multiple inflammasome components. The kit includes enough antibodies to perform at least two western blot experiments with each primary antibody.

Background: The innate immune system works as the first line of defense in protection from pathogenic microbes and host-derived signals of cellular distress. One way in which these “danger” signals trigger inflammation is through activation of inflammasomes, which are multiprotein complexes that assemble in the cytosol after exposure to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) and result in the activation of caspase-1 and subsequent cleavage of proinflammatory cytokines IL-1β and IL-18 (Reviewed in 1-6). Inflammasome complexes typically consist of a cytosolic pattern recognition receptor (PRR; a nucleotide-binding domain and leucine-rich-repeat [NLR] or AIM2-like receptor [ALR] family member), an adaptor protein (ASC/TMS1), and pro-caspase-1. A number of distinct inflammasome complexes have been identified, each with a unique PRR and activation triggers. The best characterized is the NLRP3 complex, which contains NLRP3, ASC/TMS1, and pro-caspase-1. The NLRP3 inflammasome is activated in a two-step process. First, NF-κB signaling is induced through PAMP- or DAMP-mediated activation of TLR4 or TNFR, resulting in increased expression of NLRP3, pro-IL-1β, and pro-IL-18 (priming step, signal 1). Next, indirect activation of NLRP3 occurs by a multitude of signals (whole pathogens, PAMPs/DAMPs, potassium efflux, lysosomal-damaging environmental factors [uric acid, silica, alum] and endogenous factors [amyloid-β, cholesterol crystals], and mitochondrial damage), leading to complex assembly and activation of caspase-1 (signal 2). The complex inflammasome structure is built via domain interactions among the protein components. Other inflammasomes are activated by more direct means: double-stranded DNA activates the AIM2 complex, anthrax toxin activates NLRP1, and bacterial flagellin activates NLRC4. Activated caspase-1 induces secretion of proinflammatory cytokines IL-1β and -18, but also regulates metabolic enzyme expression, phagosome maturation, vasodilation, and pyroptosis, an inflammatory programmed cell death. Inflammasome signaling contributes to the onset of a number of diseases, including atherosclerosis, type II diabetes, Alzheimer’s disease, and autoimmune disorders.

The TRAF Antibody Sampler Kit provides an economical means to evaluate endogenous levels of TRAF1, 2, 3, and 6. The kit contains enough primary and secondary antibodies to perform two western mini-blot experiments.

Background: TRAFs (TNF receptor-associated factors) are a family of multifunctional adaptor proteins that bind to surface receptors and recruit additional proteins to form multiprotein signaling complexes capable of promoting cellular responses (1-3). Members of the TRAF family share a common carboxy-terminal "TRAF domain", which mediates interactions with associated proteins; many also contain amino-terminal Zinc/RING finger motifs. The first TRAFs identified, TRAF1 and TRAF2, were found by virtue of their interactions with the cytoplasmic domain of TNF-receptor 2 (TNFRII) (4). The six known TRAFs (TRAF1-6) act as adaptor proteins for a wide range of cell surface receptors and participate in the regulation of cell survival, proliferation, differentiation, and stress responses.

The B Cell Signaling Antibody Sampler Kit provides an economical means to examine key signaling proteins commonly associated with B cell activation. The provided antibodies allow monitoring of both total protein levels and the phosphorylation state. The kit includes enough primary and secondary antibody to perform two western mini-blot experiments.
The Src Antibody Sampler kit provides an economical means of evaluating total Src protein levels and its phosphorylation status. The kit contains enough primary and secondary antibodies to perform two Western blot experiments per primary antibody.

Background: The Src family of protein tyrosine kinases, which includes Src, Lyn, Fyn, Yes, Lck, Blk, and Hck, are important in the regulation of growth and differentiation of eukaryotic cells (1). Src activity is regulated by tyrosine phosphorylation at two sites, but with opposing effects. While phosphorylation at Tyr416 in the activation loop of the kinase domain upregulates enzyme activity, phosphorylation at Tyr527 in the carboxy-terminal tail by Csk renders the enzyme less active (2).

The Phospho-Jak Family Antibody Sampler Kit provides an economical means of detecting the activation of Jak family members using phospho-specific and control antibodies. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: Members of the Janus family of tyrosine kinases (Jak1, Jak2, Jak3, and Tyk2) are activated by ligands binding to a number of associated cytokine receptors (1). Upon cytokine receptor activation, Jak proteins become autophosphorylated and phosphorylate their associated receptors to provide multiple binding sites for signaling proteins. These associated signaling proteins, such as Stats (2), Shc (3), insulin receptor substrates (4), and focal adhesion kinase (FAK) (5), typically contain SH2 or other phosphotyrosine-binding domains.Activation of Jak kinases upon cytokine receptor binding is associated with tyrosine phosphorylation within their activation loops, including Tyr1034/1035 of Jak1, Tyr1007/1008 of Jak2, Tyr980/981 of Jak3, and Tyr1054/1055 of Tyk2. Many studies have indicated that various cytokine receptors have clear preferences that utilize distinct Jak family members. Aberrant regulation of Jak signaling is associated with a number of diseases, including myeloproliferative neoplasms, leukemia, and inflammatory disease (6).

Senescence Associated Secretory Phenotype (SASP) Antibody Sampler Kit provides an economical means of detecting multiple components of the SASP. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: Senescence is characterized by stable stress-induced proliferative arrest and resistance to mitogenic stimuli, as well as the secretion of proteins such as cytokines, growth factors and proteases. These secreted proteins comprise the senescence-associated secretory phenotype (SASP). Senescent cells are thought to accumulate as an organism ages, and contribute to age-related diseases, including cancer, through promotion of inflammation and disruption of normal cellular function (1,2). The composition of the SASP varies, and SASP components can be either beneficial or deleterious in human disease, depending on the context (3).Senescence Associated Secretory Phenotype (SASP) Antibody Sampler Kit provides a collection of antibodies to various SASP components, including TNF-alpha, interleukin-6 (IL-6), the multifunctional cytokine IL-1beta, the chemokines CXCL10, RANTES/CCL5 and MCP-1, the matrix metalloprotease MMP3, and the serine-protease inhibitor PAI-1.

The Microglia Proliferation Module Antibody Sampler Kit provides an economical means of detecting proteins identified as markers of microglial proliferation by western blot and/or immunofluorescence.

Background: Distinct microglial activation states have been identified using RNA-seq data from a vast array of neurological disease and aging models. These activation states have been categorized into modules corresponding to proliferation, neurodegeneration, interferon-relation, LPS-relation, and many others (1). Previous work identifying markers of specific brain cell types using RNA-seq has shown HS1 and ASC/TMS1 to be useful and specific tools to study microglia (2). HS1 is a protein kinase substrate that is expressed only in tissues and cells of hematopoietic origin (3) and ASC/TMS1 has been found to be a critical component of inflammatory signaling where it associates with and activates caspase-1 in response to pro-inflammatory signals (4).

The Mitochondrial Marker Antibody Sampler Kit provides an economical means to evaluate relevant mitochondial proteins. This kit contains enough primary antibody to perform two western blots per primary.
The HSP/Chaperone Sampler Kit provides an economical means to investigate protein folding within the cell. The kit contains enough primary and secondary antibodies to perform two Western blot experiments with each antibody.
The Inflammasome Antibody Sampler Kit provides an economical means of detecting multiple inflammasome components. The kit contains enough primary antibodies to perform at least two western blot experiments.

Background: The innate immune system works as the first line of defense in protection from pathogenic microbes and host-derived signals of cellular distress. One way in which these “danger” signals trigger inflammation is through activation of inflammasomes, which are multiprotein complexes that assemble in the cytosol after exposure to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs) and result in the activation of caspase-1 and subsequent cleavage of proinflammatory cytokines IL-1β and IL-18 (Reviewed in 1-6). Inflammasome complexes typically consist of a cytosolic pattern recognition receptor (PRR; a nucleotide-binding domain and leucine-rich-repeat [NLR] or AIM2-like receptor [ALR] family member), an adaptor protein (ASC/TMS1), and pro-caspase-1. A number of distinct inflammasome complexes have been identified, each with a unique PRR and activation triggers. The best characterized is the NLRP3 complex, which contains NLRP3, ASC/TMS1, and pro-caspase-1. The NLRP3 inflammasome is activated in a two-step process. First, NF-κB signaling is induced through PAMP- or DAMP-mediated activation of TLR4 or TNFR, resulting in increased expression of NLRP3, pro-IL-1β, and pro-IL-18 (priming step, signal 1). Next, indirect activation of NLRP3 occurs by a multitude of signals (whole pathogens, PAMPs/DAMPs, potassium efflux, lysosomal-damaging environmental factors [uric acid, silica, alum] and endogenous factors [amyloid-β, cholesterol crystals], and mitochondrial damage), leading to complex assembly and activation of caspase-1 (signal 2). The complex inflammasome structure is built via domain interactions among the protein components. Other inflammasomes are activated by more direct means: double-stranded DNA activates the AIM2 complex, anthrax toxin activates NLRP1, and bacterial flagellin activates NLRC4. Activated caspase-1 induces secretion of proinflammatory cytokines IL-1β and -18, but also regulates metabolic enzyme expression, phagosome maturation, vasodilation, and pyroptosis, an inflammatory programmed cell death. Inflammasome signaling contributes to the onset of a number of diseases, including atherosclerosis, type II diabetes, Alzheimer’s disease, and autoimmune disorders.

The Mouse Immune Cell Phenotyping IHC Antibody Sampler Kit provides an economical means of detecting the accumulation of immune cell types in formalin-fixed, paraffin-embedded tissue samples.

Background: Cluster of Differentiation 3 (CD3) is a multiunit protein complex expressed on the surface of T-cells that directly associates with the T-cell receptor (TCR). CD3 is composed of four polypeptides: ζ, γ, ε and δ. Engagement of TCR complex with antigens presented in Major Histocompatibility Complexes (MHC) induces tyrosine phosphorylation in the immunoreceptor tyrosine-based activation motif (ITAM) of CD3 proteins. CD3 phosphorylation is required for downstream signaling through ZAP-70 and p85 subunit of PI-3 kinase, leading to T cell activation, proliferation, and effector functions (1). Cluster of Differentiation 8 (CD8) is a transmembrane glycoprotein expressed primarily on cytotoxic T cells, but has also been described on a subset of dendritic cells in mice (2,3). On T cells, CD8 is a co-receptor for the TCR, and these two distinct structures are required to recognize antigen bound to MHC Class I (2). Cluster of Differentiation 4 (CD4) is expressed on the surface of T helper cells, regulatory T cells, monocytes, macrophages, and dendritic cells, and plays an important role in the development and activation of T cells. On T cells, CD4 is the co-receptor for the TCR, and these two distinct structures recognize antigen bound to MHC Class II. CD8 and CD4 co-receptors ensure specificity of the TCR–antigen interaction, prolong the contact between the T cell and the antigen presenting cell, and recruit the tyrosine kinase Lck, which is essential for T cell activation (2). Granzyme B is a serine protease expressed by CD8+ cytotoxic T lymphocytes and natural killer (NK) cells and is a key component of the immune response to pathogens and transformed cancer cells (4). Forkhead box P3 (FoxP3) is crucial for the development of T cells with immunosuppressive regulatory properties and is a well-established marker for T regulatory cells (Tregs) (5). CD19 is a co-receptor expressed on B cells that amplifies the signaling cascade initiated by the B cell receptor (BCR) to induce activation. It is a biomarker of B lymphocyte development, lymphoma diagnosis, and can be utilized as a target for leukemia immunotherapies (6,7). F4/80 (EMR1) is a heavily glycosylated G-protein-coupled receptor and is a well-established marker for mouse macrophages (8). CD11c (integrin αX, ITGAX) is a transmembrane glycoprotein highly expressed by dendritic cells, and has also been observed on activated NK cells, subsets of B and T cells, monocytes, granulocytes, and some B cell malignancies including hairy cell leukemia (9,10).