Dropping with the temps: Cool deals on CST mAbs | Learn More >>

Antibody Sampler Kit Synaptic Vesicle

Also showing Antibody Sampler Kit Synaptic Vesicle Membrane

The Silent Synapses Antibody Sampler Kit provides an economical means of detecting the activation of AMPA-type glutamate receptors (AMPAR) using phospho-specific and control antibodies. AMPARs expression can be compared to other synaptic components including NMDA-type glutamate receptor subunit GluN1 and the synaptic scaffolding protein PSD95. The kit includes enough antibody to perform two western blot experiments with each primary antibody.

Background: AMPA- (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), kainate-, and NMDA- (N-methyl-D-aspartate) receptors are the three main families of ionotropic glutamate-gated ion channels. AMPA receptors (AMPARs) are composed of four subunits (GluA1-4), which assemble as homo- or hetero-tetramers to mediate the majority of fast excitatory transmissions in the central nervous system. AMPARs are implicated in synapse formation, stabilization, and plasticity (1). In contrast to GluA2-containing AMPARs, AMPARs that lack GluA2 are permeable to calcium (2). Post-transcriptional modifications (alternative splicing, nuclear RNA editing) and post-translational modifications (glycosylation, phosphorylation) result in a very large number of permutations, fine-tuning the kinetic properties and surface expression of AMPARs representing key pathways to mediate synaptic plasticity (3). During development and mature states, some synapses exhibit “silent synapses” that lack functional AMPAR-mediated transmission. Synapses become “unsilenced” by post-translational modification of GluAs, particularly GluA1, which alters its kinetic properties and/or surface expression while other synaptic components, such as other glutamate receptors like NMDARs and postsynaptic scaffolding proteins like PSD95, remain unaltered. Conversely, reducing the AMPAR kinetic properties and surface expression can silence synapses. Key post-translational modifications implicated in regulating these processes include phosphorylation of GluA1 at Ser831 and Ser845 (4). Research studies have implicated activity-dependent changes in AMPARs in a variety of diseases, including Alzheimer’s, amyotrophic lateral sclerosis (ALS), stroke, and epilepsy (1).

The Parkinson's Research Antibody Sampler Kit provides an economical means of detecting target proteins related to Parkinson's disease. The kit contains enough primary and secondary antibody to perform two western blots per primary.
The Rab Family Antibody Sampler Kit provides an economical means to evaluate the presence and status of Rab proteins in cells. This kit provides enough primary and secondary antibodies to perform two Western blot experiments per primary antibody.
The Endosomal Marker Antibody Sampler Kit provides an economical means of distinguishing endosomes in the early, late, and recycling phases. The kit includes enough antibody to perform two western blot experiments with each primary antibody.
The Vesicle Trafficking Antibody Sampler kit provides an economical means to analyze proteins involved in the intracellular transport of cargo proteins. This kit includes enough primary and secondary antibody to perform two western blot experiments.
The Organelle Localization IF Antibody Sampler Kit provides an economical means for identification of cellular organelles by fluorescence immunocytochemistry (IF-IC). This kit includes enough primary antibody to perform at least twenty IF-IC tests or two western blots with each antibody.
The Mitochondrial Dynamics Antibody Sampler Kit provides an economical means to examine signaling involved in mitochondrial dynamics. The kit contains enough primary antibody to perform two western blot experiments.

Background: Import of proteins into the mitochondria is regulated by the translocase of the outer mitochondrial membrane (TOM) complex, which facilitates transport through the outer mitochondrial membrane, and a complementary translocase of the inner membrane (TIM) complex, responsible for protein transport to the mitochondrial matrix. The TOM complex consists of the receptors Tom20, Tom22, and Tom70, and the channel-forming protein Tom40 (1). Tom20 is localized in the outer mitochondrial membrane and initially recognizes precursors with a presequence to facilitate protein import across the outer mitochondrial membrane (2).Changes in mitochondrial dynamics regulated by environmental cues affect mitochondrial size and shape and have been shown to dramatically impact mitochondrial metabolism, apoptosis, and autophagy (3). These processes are largely controlled by mitochondrial dynamin-related GTPases, including mitofusin-1, mitofusin-2, OPA1, and DRP1. DRP1 regulates mitochondrial fission, while the mitofusins and OPA1 control fusion at the outer and inner mitochondrial membrane, respectively. These proteins are tightly regulated. OPA1 activity is regulated through alternative splicing and post-translational modifications, including complex proteolytic processing by multiple proteases (4-9). In addition, OPA1 expression can be induced under conditions of metabolic demand through a pathway involving Parkin induced NF-κB activation (10). DRP1 is regulated in part through multiple phosphorylation sites (11). Phosphorylation of DRP1 at Ser616 by MAPK or during mitosis by CDKs stimulates mitochondrial fission (12-14). Mitochondrial fission factor (MFF) is a tail-anchored protein that resides within the outer mitochondrial membrane and is part of the mitochondrial fission complex. MFF participates in mitochondrial fission by serving as one of multiple receptors for the GTPase dynamin-related protein 1 (Drp1) (15-18). AMPK directly phosphorylates MFF at two sites to allow for enhanced recruitment of Drp1 to the mitochondria (19). 

The AMPA Receptor (GluA) Antibody Sampler Kit provides an economical means of evaluating the four subunits of AMPARs. The kit contains enough primary and secondary antibodies to perform two western blot experiments with each antibody.

Background: AMPA- (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid), kainate-, and NMDA- (N-methyl-D-aspartate) receptors are the three main families of ionotropic glutamate-gated ion channels. AMPA receptors (AMPARs) are comprised of four subunits (GluR 1-4), which assemble as homo- or hetero-tetramers to mediate the majority of fast excitatory transmissions in the central nervous system. AMPARs are implicated in synapse formation, stabilization, and plasticity (1). In contrast to GluR 2-containing AMPARs, AMPARs that lack GluR 2 are permeable to calcium (2). Post-transcriptional modifications (alternative splicing, nuclear RNA editing) and post-translational modifications (glycosylation, phosphorylation) result in a very large number of permutations, fine-tuning the kinetic properties of AMPARs. Research studies have implicated activity changes in AMPARs in a variety of diseases including Alzheimer’s, amyotrophic lateral sclerosis (ALS), stroke, and epilepsy (1).

The Pro-Survival Bcl-2 Family Antibody Sampler Kit II provides an economical means to examine several members of the Bcl-2 family. The kit contains enough primary antibody to perform two western blot experiments.

Background: The Bcl-2 family consists of a number of evolutionarily conserved proteins containing Bcl-2 homology domains (BH) that regulate apoptosis through control of mitochondrial membrane permeability and release of cytochrome c (1-3). Four BH domains have been identified (BH1-4) that mediate protein interactions. The family can be separated into three groups based upon function and sequence homology: pro-survival members include Bcl-2, Bcl-xL, Mcl-1, A1 and Bcl-w; pro-apoptotic proteins include Bax, Bak and Bok; and "BH3 only" proteins Bad, Bik, Bid, Puma, Bim, Bmf, Noxa and Hrk. Interactions between death-promoting and death-suppressing Bcl-2 family members has led to a rheostat model in which the ratio of pro-apoptotic and anti-apoptotic proteins controls cell fate (4). Thus, pro-survival members exert their behavior by binding to and antagonizing death-promoting members. In general, the "BH3-only members" can bind to and antagonize the pro-survival proteins leading to increased apoptosis (5). While some redundancy of this system likely exists, tissue specificity, transcriptional and post-translational regulation of many of these family members can account for distinct physiological roles.