Microsize antibodies for $99 | Learn More >>

Human Autophagic Cell Death

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: BNIP3 (Bcl-2/E1B-19kDa interacting protein 3) is a pro-apoptotic mitochondrial protein and Bcl-2 family member that contains a Bcl-2 homology 3 (BH3) domain and a carboxyl-terminal transmembrane (TM) domain (1-3). While BNIP3 has a predicted molecular weight of about 22 kDa, it runs anomalously on SDS-PAGE and includes a band of around 60 kDa that may be a dimeric form that is not reduced (2). BNIP3 associates with anti-apoptotic family members Bcl-2, Bcl-xL, and the adenovirus homologue E1B-19kDa. BNIP3 is distinct from other Bcl-2 family members that contain only the BH3 domain in that the TM domain, and not the BH3 domain, is required for mitochondrial targeting and pro-apoptotic activity (4). In addition to apoptosis, BNIP3 has been implicated in necrosis (5) and autophagy (6-11). In hypoxic conditions, BNIP3 can induce mitochondrial autophagy (mitophagy) by disrupting the Bcl-2-Beclin-1 complex (9). BNIP3 can also promote mitophagy by triggering the translocation of the E3 ubiquitin ligase Parkin to the mitochondria (10) or by directly binding LC3 on the autophagosome (11). BNIP3 may also localize to the endoplasmic reticulum (ER) where it can selectively induce the autophagic clearance of ER (ERphagy) (11). Increased expression of BNIP3 under hypoxic conditions is mainly regulated by the transcription factor HIF-1α (12-14). Silencing of the BNIP3 promoter by methylation has been observed in several types of cancer cells and may play an important role in their survival (14-18).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Bif-1/SH3GLB1/Endophilin-B1 is a member of the endophilin B family that was originally identified as a Bax binding protein through yeast two-hybrid screening (1,2). Bif-1 does not have significant homology to other Bcl-2 family members, but rather contains an N-terminal Bin-Amphiphysin-Rvs (BAR) domain, typically involved in membrane dynamics, and a C-terminal SH3 domain. Overexpression of Bif-1 promotes Bax conformational change and apoptosis (2,3). Likewise, loss of Bif-1 inhibits Bax and Bak activation, cytochrome c release, and caspase activation (3). Bif-1 is localized to membranes of intracellular organelles and has been suggested to play a role in membrane dynamics, including that during autophagy. Bif-1 directly binds to UVRAG, forming a complex with Beclin-1, resulting in increased PI3-kinase class III/Vps34 activity required for autophagosome maturation (4). Inhibition of GSK-3β, as seen during nutrient deprivation, results in increased expression of Bif-1, and can contribute to autophagic cell death (5). Research studies have shown that loss of Bif-1 promotes tumorigenesis, and decreased expression of Bif-1 has been noted in several cancer types (6-11).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Lysosome-associated membrane protein 1 and 2 (LAMP1 and LAMP2) are two abundant lysosomal membrane proteins (1,2). Both are transmembrane proteins and are heavily glycosylated at the amino-terminal luminal side of the lysosomal inner leaflet, which protects the proteins from proteolysis (3). The carboxy terminus of LAMP1 is exposed to the cytoplasm and contains a tyrosine sorting motif that targets LAMP to lysosomal membranes (4). LAMP1 and LAMP2 are 37% homologous in their protein sequences. Both LAMP1 and LAMP2 are involved in regulating lysosomal motility during lysosome-phagosome fusion and cholesterol trafficking (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Lysosome-associated membrane protein 1 and 2 (LAMP1 and LAMP2) are two abundant lysosomal membrane proteins (1,2). Both are transmembrane proteins and are heavily glycosylated at the amino-terminal luminal side of the lysosomal inner leaflet, which protects the proteins from proteolysis (3). The carboxy terminus of LAMP1 is exposed to the cytoplasm and contains a tyrosine sorting motif that targets LAMP to lysosomal membranes (4). LAMP1 and LAMP2 are 37% homologous in their protein sequences. Both LAMP1 and LAMP2 are involved in regulating lysosomal motility during lysosome-phagosome fusion and cholesterol trafficking (5,6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Lysosome-associated membrane protein 1 and 2 (LAMP1 and LAMP2) are two abundant lysosomal membrane proteins (1,2). Both are transmembrane proteins and are heavily glycosylated at the amino-terminal luminal side of the lysosomal inner leaflet, which protects the proteins from proteolysis (3). The carboxy terminus of LAMP1 is exposed to the cytoplasm and contains a tyrosine sorting motif that targets LAMP to lysosomal membranes (4). LAMP1 and LAMP2 are 37% homologous in their protein sequences. Both LAMP1 and LAMP2 are involved in regulating lysosomal motility during lysosome-phagosome fusion and cholesterol trafficking (5,6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: p27 Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors. Like its relatives, p57 Kip2 and p21 Waf1/Cip1, the ability to enforce the G1 restriction point is derived from its inhibitory binding to CDK2/cyclin E and other CDK/cyclin complexes. Expression levels of p27 are upregulated in quiescent cells and in cells treated with cAMP or other negative cell cycle regulators. Downregulation of p27 can be induced by treatment with interleukin-2 or other mitogens; this involves phosphorylation of p27 and its degradation by the ubiquitin-proteasome pathway (1-4).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated p27 Kip1 (D69C12) XP® Rabbit mAb #3686.
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Flow Cytometry

Background: p27 Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors. Like its relatives, p57 Kip2 and p21 Waf1/Cip1, the ability to enforce the G1 restriction point is derived from its inhibitory binding to CDK2/cyclin E and other CDK/cyclin complexes. Expression levels of p27 are upregulated in quiescent cells and in cells treated with cAMP or other negative cell cycle regulators. Downregulation of p27 can be induced by treatment with interleukin-2 or other mitogens; this involves phosphorylation of p27 and its degradation by the ubiquitin-proteasome pathway (1-4).

$262
3 nmol
300 µl
SignalSilence® p27 Kip1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit p27 Kip1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: p27 Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors. Like its relatives, p57 Kip2 and p21 Waf1/Cip1, the ability to enforce the G1 restriction point is derived from its inhibitory binding to CDK2/cyclin E and other CDK/cyclin complexes. Expression levels of p27 are upregulated in quiescent cells and in cells treated with cAMP or other negative cell cycle regulators. Downregulation of p27 can be induced by treatment with interleukin-2 or other mitogens; this involves phosphorylation of p27 and its degradation by the ubiquitin-proteasome pathway (1-4).

$262
3 nmol
300 µl
SignalSilence® p27 Kip1 siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit p27 Kip1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: p27 Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors. Like its relatives, p57 Kip2 and p21 Waf1/Cip1, the ability to enforce the G1 restriction point is derived from its inhibitory binding to CDK2/cyclin E and other CDK/cyclin complexes. Expression levels of p27 are upregulated in quiescent cells and in cells treated with cAMP or other negative cell cycle regulators. Downregulation of p27 can be induced by treatment with interleukin-2 or other mitogens; this involves phosphorylation of p27 and its degradation by the ubiquitin-proteasome pathway (1-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin)

Background: p27 Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors. Like its relatives, p57 Kip2 and p21 Waf1/Cip1, the ability to enforce the G1 restriction point is derived from its inhibitory binding to CDK2/cyclin E and other CDK/cyclin complexes. Expression levels of p27 are upregulated in quiescent cells and in cells treated with cAMP or other negative cell cycle regulators. Downregulation of p27 can be induced by treatment with interleukin-2 or other mitogens; this involves phosphorylation of p27 and its degradation by the ubiquitin-proteasome pathway (1-4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: p27 Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors. Like its relatives, p57 Kip2 and p21 Waf1/Cip1, the ability to enforce the G1 restriction point is derived from its inhibitory binding to CDK2/cyclin E and other CDK/cyclin complexes. Expression levels of p27 are upregulated in quiescent cells and in cells treated with cAMP or other negative cell cycle regulators. Downregulation of p27 can be induced by treatment with interleukin-2 or other mitogens; this involves phosphorylation of p27 and its degradation by the ubiquitin-proteasome pathway (1-4).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: p27 Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors. Like its relatives, p57 Kip2 and p21 Waf1/Cip1, the ability to enforce the G1 restriction point is derived from its inhibitory binding to CDK2/cyclin E and other CDK/cyclin complexes. Expression levels of p27 are upregulated in quiescent cells and in cells treated with cAMP or other negative cell cycle regulators. Downregulation of p27 can be induced by treatment with interleukin-2 or other mitogens; this involves phosphorylation of p27 and its degradation by the ubiquitin-proteasome pathway (1-4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: p27 Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors. Like its relatives, p57 Kip2 and p21 Waf1/Cip1, the ability to enforce the G1 restriction point is derived from its inhibitory binding to CDK2/cyclin E and other CDK/cyclin complexes. Expression levels of p27 are upregulated in quiescent cells and in cells treated with cAMP or other negative cell cycle regulators. Downregulation of p27 can be induced by treatment with interleukin-2 or other mitogens; this involves phosphorylation of p27 and its degradation by the ubiquitin-proteasome pathway (1-4).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated p27 Kip1 (D69C12) XP® Rabbit mAb #3686.
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Western Blotting

Background: p27 Kip1 is a member of the Cip/Kip family of cyclin-dependent kinase inhibitors. Like its relatives, p57 Kip2 and p21 Waf1/Cip1, the ability to enforce the G1 restriction point is derived from its inhibitory binding to CDK2/cyclin E and other CDK/cyclin complexes. Expression levels of p27 are upregulated in quiescent cells and in cells treated with cAMP or other negative cell cycle regulators. Downregulation of p27 can be induced by treatment with interleukin-2 or other mitogens; this involves phosphorylation of p27 and its degradation by the ubiquitin-proteasome pathway (1-4).

$108
250 PCR reactions
500 µl
SimpleChIP® Human CDKN1B Promoter Primers contain a mix of forward and reverse PCR primers that are specific to the human CDKN1B promoter. These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR® Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP® Enzymatic Chromatin IP Kits #9002 and #9003 and ChIP-validated antibodies from Cell Signaling Technology®. CDKN1B encodes for p27 Kip1, a tumor suppressor which inhibits cyclin dependent kinases.
REACTIVITY
Human

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to either identify multiple proteins associated with a specific region of the genome or to identify the many regions of the genome bound by a particular protein (3-6). ChIP can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors, and DNA repair proteins. When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. Fragmented chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or quantitative real-time PCR are often used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing (ChIP-Seq), or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8). SimpleChIP® primers have been optimized for amplification of ChIP-isolated DNA using real-time quantitative PCR and provide important positive and negative controls that can be used to confirm a successful ChIP experiment.