20% off purchase of 3 or more products* | Learn More >>

Human Beta-Adrenergic Receptor Activity

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: β1-Adrenergic Receptor (β1AR) is a G protein-coupled receptor (GPCR) involved in the regulation of cardiovascular functions (1). Together with β2AR, β1AR is a major βAR in the heart. β1AR is activated by catecholamines and couples to Gαs protein, activating adenylate cyclase and increasing intracellular cAMP levels (2). Beta-blockers (βAR antagonists), one of the major class of therapeutics in cardiovascular medicine, act mostly by preventing catecholamine binding to β1AR (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: G-protein-coupled receptor kinase 2 (GRK2), also known as beta-adrenergic receptor kinase 1 (beta-ARK1), is a member of the GRK family, which phosphorylates the activated form of G-protein-coupled receptors (GPCRs) and initiates the desensitization process of GPCR (1). GRK2 kinase activity and cellular localization are tightly regulated by interactions with activated receptors, G-beta and G-gamma subunits, adaptor proteins, phospholipids, caveolin and calmodulin, as well as by phosphorylation (1). PKC phosphorylation enhances GRK2 activity by promoting its membrane localization and by abolishing the inhibitory association of calmodulin (2,3). PKA phosphorylates GRK2 at Ser685, which facilitates the association of GRK2 with a beta-adrenergic receptor (4). Erk inhibits GRK2 activity via phosphorylation at Ser670 (5). Src phosphorylates GRK2 at multiple tyrosine residues (Tyr13, 86 and 92), which activates GRK2 activity and promotes GRK2 degradation (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: G-protein-coupled receptor kinase 3 (GRK3), also known as beta-adrenergic receptor kinase 2 (beta-ARK2), is a member of the GRK family, which phosphorylates the activated form of G-protein-coupled receptors (GPCRs) and initiates the desensitization process of GPCR (1). GRK3 has been implicated in the phosphorylation of GPCRs, enabling their interaction with beta-arrestin, and facilitating their signaling through ERK1/2 phosphorylation (2). More recently, GRK3 was found to play a critical role in tumor progression through stimulation of angiogenesis; furthermore, GRK3 was found to be overexpressed in human prostate cancer, in particular in metastatic tumors (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: G protein-coupled Receptor Kinase 6 (GRK6) is one of 7 members of the GRK serine/threonine kinase subfamily, which are known primarily for their role in desensitizing activated G protein-coupled receptors (GPCRs) (1,2). GRKs function by phosphorylating serine/threonine residues in activated GPCRs. Upon phosphorylation these residues serve as binding sites for β-arrestin proteins, inhibiting re-activation of GPCRs by blocking their re-association with G proteins (3). There is evidence that GRKs can also modulate selected non-GPCR signaling pathways (2). For example, GRK6 has been shown to modulate the Wnt signaling pathway via phosphorylation of LRP6 (4), and the insulin-like growth factor signaling pathway (5). GRK6 may also play a role in immune system function. Investigators have found GRK6 expression is typically abundant in hematopoietic tumor cell lines, and a recent research study demonstrated that GRK6 suppression was selectively lethal for a number of myeloma tumor cell lines (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: Postsynaptic Density protein 95 (PSD95) is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins. These family members consist of an amino-terminal variable segment followed by three PDZ domains, a SH3 domain, and an inactive guanylate kinase (GK) domain. PSD95 is a scaffolding protein involved in the assembly and function of the postsynaptic density complex (1-2). PSD95 participates in synaptic targeting of AMPA receptors through an indirect manner involving Stargazin and related transmembrane AMPA receptor regulatory proteins (TARPs) (3). It is implicated in experience-dependent plasticity and plays an indispensable role in learning (4). Mutations in PSD95 are associated with autism (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Neural precursor expressed, developmentally down-regulated protein 4 (NEDD4) was originally identified as a gene that is highly expressed in the early mouse embryonic central nervous system (1). Subsequently, a family of NEDD4-like proteins have been defined that includes seven members in humans (2). NEDD4 and NEDD4-like (NEDD4L) proteins contain multiple functional domains including a calcium-dependent phospholipid and membrane binding domain (C2 domain), two to four protein binding domains (WW domains), and an E3 ubiquitin-protein ligase domain (HECT domain). NEDD4 and NEDD4L have been shown to downregulate both neuronal voltage-gated Na+ channels (NaVs) and epithelial Na+ channels (ENaCs) in response to increased intracellular Na+ concentrations (3,4). The WW domains of NEDD4 bind to PY motifs (amino acid sequence PPXY) found in multiple NaV and ENaC proteins; ubiquitination of these proteins is mediated by the HECT domain of NEDD4 and results in their internalization and removal from the plasma membrane. Research studies have shown that mutation of the PY motifs in ENaC proteins is associated with Liddle's syndrome, an autosomal dominant form of hypertension (5). In addition to targeting sodium channels, NEDD4L has also been shown to negatively regulate TGF-β signaling by targeting Smad2 for degradation (6). Mouse and human NEDD4 are rapidly cleaved by caspase proteins during apoptosis, although the significance of this cleavage is not clear (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Na+/H+ exchanger regulatory factor (NHERF1 or EBP-50) is one of several related PDZ domain-containing proteins (1). NHERF1 was first identified as a necessary cofactor for cyclic AMP-associated inhibition of Na+/ H+ exchanger isoform 3 (NHE3) (2). NHERF1 is a multifunctional adaptor protein that interacts with receptors and ion transporters via its PDZ domains, and with the ERM family of proteins, including merlin, via its carboxy-terminus (2,3). NHERF1 may play an important role in breast cancer. Estrogen has been found to induce NHERF1 in estrogen receptor-positive breast cancer cells (2,3). Furthermore, NHERF1 has been shown to bind to PDGFR, which is activated in breast carcinomas. NHERF1 has been found to promote the formation of a ternary complex containing PTEN, NHERF1, and PDGFR. Therefore, NHERF1 may function to recruit PTEN to PDGFR to inhibit the activation of PI3K/Akt signaling in normal cells; this mechanism may be disrupted in cancer (4). NHERF1 also binds to the cystic fibrosis transmembrane conductance regulator (CFTR), which functions as an ion channel and has disease-causing mutations in cystic fibrosis (5). Other proposed functions of NHERF1 include testicular differentiation, endosomal recycling, membrane targeting, protein sorting, and trafficking (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Na+/H+ exchanger regulatory factor (NHERF1 or EBP-50) is one of several related PDZ domain-containing proteins (1). NHERF1 was first identified as a necessary cofactor for cyclic AMP-associated inhibition of Na+/ H+ exchanger isoform 3 (NHE3) (2). NHERF1 is a multifunctional adaptor protein that interacts with receptors and ion transporters via its PDZ domains, and with the ERM family of proteins, including merlin, via its carboxy-terminus (2,3). NHERF1 may play an important role in breast cancer. Estrogen has been found to induce NHERF1 in estrogen receptor-positive breast cancer cells (2,3). Furthermore, NHERF1 has been shown to bind to PDGFR, which is activated in breast carcinomas. NHERF1 has been found to promote the formation of a ternary complex containing PTEN, NHERF1, and PDGFR. Therefore, NHERF1 may function to recruit PTEN to PDGFR to inhibit the activation of PI3K/Akt signaling in normal cells; this mechanism may be disrupted in cancer (4). NHERF1 also binds to the cystic fibrosis transmembrane conductance regulator (CFTR), which functions as an ion channel and has disease-causing mutations in cystic fibrosis (5). Other proposed functions of NHERF1 include testicular differentiation, endosomal recycling, membrane targeting, protein sorting, and trafficking (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Neural precursor expressed, developmentally down-regulated protein 4 (NEDD4) was originally identified as a gene that is highly expressed in the early mouse embryonic central nervous system (1). Subsequently, a family of NEDD4-like proteins have been defined that includes seven members in humans (2). NEDD4 and NEDD4-like (NEDD4L) proteins contain multiple functional domains including a calcium-dependent phospholipid and membrane binding domain (C2 domain), two to four protein binding domains (WW domains), and an E3 ubiquitin-protein ligase domain (HECT domain). NEDD4 and NEDD4L have been shown to downregulate both neuronal voltage-gated Na+ channels (NaVs) and epithelial Na+ channels (ENaCs) in response to increased intracellular Na+ concentrations (3,4). The WW domains of NEDD4 bind to PY motifs (amino acid sequence PPXY) found in multiple NaV and ENaC proteins; ubiquitination of these proteins is mediated by the HECT domain of NEDD4 and results in their internalization and removal from the plasma membrane. Research studies have shown that mutation of the PY motifs in ENaC proteins is associated with Liddle's syndrome, an autosomal dominant form of hypertension (5). In addition to targeting sodium channels, NEDD4L has also been shown to negatively regulate TGF-β signaling by targeting Smad2 for degradation (6). Mouse and human NEDD4 are rapidly cleaved by caspase proteins during apoptosis, although the significance of this cleavage is not clear (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Neural precursor expressed, developmentally down-regulated protein 4 (NEDD4) was originally identified as a gene that is highly expressed in the early mouse embryonic central nervous system (1). Subsequently, a family of NEDD4-like proteins have been defined that includes seven members in humans (2). NEDD4 and NEDD4-like (NEDD4L) proteins contain multiple functional domains including a calcium-dependent phospholipid and membrane binding domain (C2 domain), two to four protein binding domains (WW domains), and an E3 ubiquitin-protein ligase domain (HECT domain). NEDD4 and NEDD4L have been shown to downregulate both neuronal voltage-gated Na+ channels (NaVs) and epithelial Na+ channels (ENaCs) in response to increased intracellular Na+ concentrations (3,4). The WW domains of NEDD4 bind to PY motifs (amino acid sequence PPXY) found in multiple NaV and ENaC proteins; ubiquitination of these proteins is mediated by the HECT domain of NEDD4 and results in their internalization and removal from the plasma membrane. Research studies have shown that mutation of the PY motifs in ENaC proteins is associated with Liddle's syndrome, an autosomal dominant form of hypertension (5). In addition to targeting sodium channels, NEDD4L has also been shown to negatively regulate TGF-β signaling by targeting Smad2 for degradation (6). Mouse and human NEDD4 are rapidly cleaved by caspase proteins during apoptosis, although the significance of this cleavage is not clear (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Na+/H+ exchanger regulatory factor (NHERF1 or EBP-50) is one of several related PDZ domain-containing proteins (1). NHERF1 was first identified as a necessary cofactor for cyclic AMP-associated inhibition of Na+/ H+ exchanger isoform 3 (NHE3) (2). NHERF1 is a multifunctional adaptor protein that interacts with receptors and ion transporters via its PDZ domains, and with the ERM family of proteins, including merlin, via its carboxy-terminus (2,3). NHERF1 may play an important role in breast cancer. Estrogen has been found to induce NHERF1 in estrogen receptor-positive breast cancer cells (2,3). Furthermore, NHERF1 has been shown to bind to PDGFR, which is activated in breast carcinomas. NHERF1 has been found to promote the formation of a ternary complex containing PTEN, NHERF1, and PDGFR. Therefore, NHERF1 may function to recruit PTEN to PDGFR to inhibit the activation of PI3K/Akt signaling in normal cells; this mechanism may be disrupted in cancer (4). NHERF1 also binds to the cystic fibrosis transmembrane conductance regulator (CFTR), which functions as an ion channel and has disease-causing mutations in cystic fibrosis (5). Other proposed functions of NHERF1 include testicular differentiation, endosomal recycling, membrane targeting, protein sorting, and trafficking (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Postsynaptic Density protein 95 (PSD95) is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins. These family members consist of an amino-terminal variable segment followed by three PDZ domains, a SH3 domain, and an inactive guanylate kinase (GK) domain. PSD95 is a scaffolding protein involved in the assembly and function of the postsynaptic density complex (1-2). PSD95 participates in synaptic targeting of AMPA receptors through an indirect manner involving Stargazin and related transmembrane AMPA receptor regulatory proteins (TARPs) (3). It is implicated in experience-dependent plasticity and plays an indispensable role in learning (4). Mutations in PSD95 are associated with autism (5).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Postsynaptic Density protein 95 (PSD95) is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins. These family members consist of an amino-terminal variable segment followed by three PDZ domains, a SH3 domain, and an inactive guanylate kinase (GK) domain. PSD95 is a scaffolding protein involved in the assembly and function of the postsynaptic density complex (1-2). PSD95 participates in synaptic targeting of AMPA receptors through an indirect manner involving Stargazin and related transmembrane AMPA receptor regulatory proteins (TARPs) (3). It is implicated in experience-dependent plasticity and plays an indispensable role in learning (4). Mutations in PSD95 are associated with autism (5).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Western Blotting

Background: Postsynaptic Density protein 95 (PSD95) is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins. These family members consist of an amino-terminal variable segment followed by three PDZ domains, a SH3 domain, and an inactive guanylate kinase (GK) domain. PSD95 is a scaffolding protein involved in the assembly and function of the postsynaptic density complex (1-2). PSD95 participates in synaptic targeting of AMPA receptors through an indirect manner involving Stargazin and related transmembrane AMPA receptor regulatory proteins (TARPs) (3). It is implicated in experience-dependent plasticity and plays an indispensable role in learning (4). Mutations in PSD95 are associated with autism (5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Postsynaptic Density protein 95 (PSD95) is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins. These family members consist of an amino-terminal variable segment followed by three PDZ domains, a SH3 domain, and an inactive guanylate kinase (GK) domain. PSD95 is a scaffolding protein involved in the assembly and function of the postsynaptic density complex (1-2). PSD95 participates in synaptic targeting of AMPA receptors through an indirect manner involving Stargazin and related transmembrane AMPA receptor regulatory proteins (TARPs) (3). It is implicated in experience-dependent plasticity and plays an indispensable role in learning (4). Mutations in PSD95 are associated with autism (5).