20% off purchase of 3 or more products* | Learn More >>

Human Dna Packaging

Also showing Monkey Dna Packaging

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Chromatin IP, Western Blotting

Background: MYST3, also known as Monocytic leukemia zinc finger protein (MOZ) and lysine acetyltransferase 6A (KAT6), is a member of the MYST (MOZ, YBF2, SAS2, and TIP60) family of histone acetyltransferases (1,2). First discovered as a fusion partner of CREBBP in acute myeloid leukemia, MYST3 contributes to Hox gene expression and segment identity during development (3-6). MYST3 forms an evolutionarily conserved complex with ING5, EAF6, and BRD1 and has been shown to be a coactivator for many different transcription factors including PU.1, NRF2, and Runx family members (7-9). MYST3 is critical in hematopoietic stem cell maintenance, where it acts synergistically with polycomb member BMI1 (10). Inhibitors of MYST3 are being investigated for therapeutic value as they can induce senescence and decrease tumor growth (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein acetylation is a common modification that occurs both at lysine residues within proteins (ε-amino acetylation) and multiple amino acid residues at the amino terminus of proteins (α-amino acetylation). The N-α-acetyltransferase ARD1 homolog A protein (ARD1A, also known as NAA10) and the highly homologous N-α-acetyltransferase ARD1 homolog B protein (ARD1B, also known as ARD2 or NAA11) are mutually exclusive catalytic subunits of the amino-terminal acetyltransferase complex (NatA) (1-3). This complex, which consists of either ARD1A or ARD1B and the N-α-acetyltransferase 15 (NAA15) auxiliary protein, localizes to ribosomes where it functions to acetylate Ser-, Ala-, Gly-, Thr-, Cys-, Pro-, and Val- amino termini after initiator methionine cleavage during protein translation (1-5). Like ε-amino acetylation, amino-terminal α-amino acetylation functions to regulate protein stability, activity, cellular localization, and protein-protein interactions (4,5). Defects in ARD1A have been shown to cause amino-terminal acetyltransferase deficiency (NATD), which results in severe delays and defects in postnatal growth (6).In addition to functioning as amino-terminal acetyltransferases in the NatA complex, free ARD1A and ARD1B proteins regulate cell growth and differentiation through ε-amino acetylation of lysine residues in multiple target proteins, including the HIF-1α, β-catenin, and AP-1 transcription factors (7-9). ARD1A-mediated acetylation of HIF-1α at Lys532 under normoxic conditions enhances binding of VHL, leading to increased ubiquitination and degradation of HIF-1α and down-regulation of HIF-1α target genes involved in angiogenesis, apoptosis, cellular proliferation, and glucose metabolism (7). Decreased expression of ARD1A under hypoxic conditions contributes to the stabilization of HIF-1α and upregulation of target genes (7). ARD1A also promotes cell proliferation and tumorigenesis by acetylating and activating β-catenin and AP-1 transcription factors, leading to the stimulation of cyclin D1 expression (8,9). Interestingly, the acetyltransferase activity of ARD1A is regulated by autoacetylation at Lys136, which is required for the ability of ARD1A to promote proliferation and tumorigenesis (9). Research studies have shown that ARD1 proteins are over-expressed in multiple cancers, including breast, prostate, lung, and colorectal cancers (10-13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Protein acetylation is a common modification that occurs both at lysine residues within proteins (ε-amino acetylation) and multiple amino acid residues at the amino terminus of proteins (α-amino acetylation). The N-α-acetyltransferase ARD1 homolog A protein (ARD1A, also known as NAA10) and the highly homologous N-α-acetyltransferase ARD1 homolog B protein (ARD1B, also known as ARD2 or NAA11) are mutually exclusive catalytic subunits of the amino-terminal acetyltransferase complex (NatA) (1-3). This complex, which consists of either ARD1A or ARD1B and the N-α-acetyltransferase 15 (NAA15) auxiliary protein, localizes to ribosomes where it functions to acetylate Ser-, Ala-, Gly-, Thr-, Cys-, Pro-, and Val- amino termini after initiator methionine cleavage during protein translation (1-5). Like ε-amino acetylation, amino-terminal α-amino acetylation functions to regulate protein stability, activity, cellular localization, and protein-protein interactions (4,5). Defects in ARD1A have been shown to cause amino-terminal acetyltransferase deficiency (NATD), which results in severe delays and defects in postnatal growth (6).In addition to functioning as amino-terminal acetyltransferases in the NatA complex, free ARD1A and ARD1B proteins regulate cell growth and differentiation through ε-amino acetylation of lysine residues in multiple target proteins, including the HIF-1α, β-catenin, and AP-1 transcription factors (7-9). ARD1A-mediated acetylation of HIF-1α at Lys532 under normoxic conditions enhances binding of VHL, leading to increased ubiquitination and degradation of HIF-1α and down-regulation of HIF-1α target genes involved in angiogenesis, apoptosis, cellular proliferation, and glucose metabolism (7). Decreased expression of ARD1A under hypoxic conditions contributes to the stabilization of HIF-1α and upregulation of target genes (7). ARD1A also promotes cell proliferation and tumorigenesis by acetylating and activating β-catenin and AP-1 transcription factors, leading to the stimulation of cyclin D1 expression (8,9). Interestingly, the acetyltransferase activity of ARD1A is regulated by autoacetylation at Lys136, which is required for the ability of ARD1A to promote proliferation and tumorigenesis (9). Research studies have shown that ARD1 proteins are over-expressed in multiple cancers, including breast, prostate, lung, and colorectal cancers (10-13).