Microsize antibodies for $99 | Learn More >>

Human Dna Protection

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Cystathionine beta-synthase (CBS) is a key enzyme involved in sulfur amino acid metabolism because it catalyzes the formation of cystathionine from serine and homocysteine (1,2). The CBS protein contains a heme-binding domain that modulates enzyme activity by sensing redox changes or carbon monoxide binding (1). S-adenosylmethionine binds the carboxyl-terminal CBS domain to allosterically regulate CBS catalytic activity (3,4). In addition to catalyzing cystathionine formation, CBS also catalyzes the generation of hydrogen sulfide, a neuromodulator in the brain, through alternative reactions (5,6). Mutations in the corresponding CBS gene result in homocystinuria, an autosomal recessive disorder characterized by abnormal sulfur metabolism, mental retardation, eye anomalies, and vascular disease (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: MutT Homolog 1 (MTH1), an oxidized purine nucleoside triphosphatase, hydrolyzes potentially mutagenic oxidized nucleotide triphosphates, preventing their accumulation in nucleotide pools and their incorporation into DNA and RNA (1). In addition to its function in sanitizing the cell’s nucleotide pool, MTH1 has been shown to have anti-proliferative effects in RAS-transformed tumors (2). Researchers have shown that, while not essential in normal cells, MTH1 is required for cancer cell survival due to increased oxidative damage, and that inhibition of MTH1 activity suppresses cancer growth (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: BLM, a member of the RecQ family of DNA helicases, is part of the BRCA1-associated genome surveillance complex (BASC) that responds to DNA damage, stalled replication forks and S phase arrest (1-4). Phosphorylation of BLM helicase at Thr99 and Thr122 occurs in response to genotoxic stress (4), and phosphorylation of Ser144 appears to be important in regulating chromosome stability during mitosis (5). Typical BLM protein resides in the nucleus and forms part of a dynamic protein complex that acts in response to DNA damage during specific periods of the cell cycle (6). Although RecQ helicases are rarely considered as essential enzymes, they function at the interface between DNA recombination and repair and are required for global genome stability maintenance. Mutations in BLM helicase are responsible for development of Bloom Syndrome, a recessive genetic disorder clinically characterized by short stature, immunodeficiency and elevated risk of malignancy (7). Similar alterations to genes encoding the related RecQ helicases RecQ4 and WRN also result in recessive genetic disorders associated with genomic instability (8,9). Cells from Bloom Syndrome patients exhibit genomic instability and increased frequency of sister chromatid exchange (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Flap endonuclease-1 (FEN-1) is a structure-specific nuclease with multiple functions in DNA processing pathways (1,2). The replication and DNA repair activities of FEN-1 are critical for genomic stability in the eukaryotic cell. Through interaction with proliferation cell nuclear antigen (PCNA), FEN-1 helps coordinate Okazaki fragment maturation by removing RNA-DNA primers (3). FEN-1 is also required for non-homologous end joining of double stranded DNA breaks in long patch base excision repair (4,5). The multi-functional activities of FEN-1 are regulated by various mechanisms, including protein partner interactions (6,7), post-translational modifications (8,9), and subcellular re-localization in response to cell cycle or DNA damage (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: DNA repair systems operate in all living cells to manage a variety of DNA lesions. Nucleotide excision repair (NER) is implemented in cases where bulky helix-distorting lesions occur, such as those brought about by UV and certain chemicals (1). Excision Repair Cross Complementing 1 (ERCC1) forms a complex with ERCC4/XPF, which acts as the 5’ endonuclease required to excise the lesion (2). ERCC1-XPF is also required for repair of DNA interstrand crosslinks (ICLs) (3) and involved in repair of double strand breaks (4). Research studies have shown that expression of ERCC1 is related to survival rate and response to chemotherapeutic drugs in several human cancers including non-small cell lung cancer (NSCLC) (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: XPB and XPD are ATPase/helicase subunits of the TFIIH complex that are involved in nucleotide excision repair (NER) to remove lesions and photoproducts generated by UV light (1). XPB and XPD are 3’-5’ and 5’-3’ DNA helicases, respectively, that play a role in opening of the DNA damage site to facilitate repair (2,3). XPB and XPD both play an important role in maintaining genomic stability, and researchers have linked mutations of these proteins to Xeroderma Pigmentosum (XP) and Trichothiodystrophy (TTD). XP patients have abnormalities in skin pigmentation and are highly susceptible to skin cancers, while TTD patients exhibit symptoms such as brittle hair, neurological abnormalities, and mild photosensitivity (4). In addition to their role in NER, XPB and XPD are involved in transcription initiation as part of the TFIIH core complex (5). The helicase activity of XPB unwinds DNA around the transcription start site to facilitate RNA polymerase II promoter clearance and initiation of transcription (6). XPD plays a structural role linking core TFIIH components with the cdk-activating kinase (CAK) complex that phosphorylates the C-terminus of the largest subunit of RNA polymerase II, leading to transcription initiation (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Telomeric repeat-binding factor 2-interacting protein (TERF2IP, also known as RAP1) is a component of the Shelterin Complex, a multi-protein complex that binds and organizes telomeres into T-loop structures to prevent them from being recognized by the cell as DNA double stranded breaks (1,2). The Shelterin Complex is composed of TERF2IP, TIN2 and TPP2 proteins, in addition to three DNA binding proteins that function to recruit the complex to telomeres: TRF1 and TRF2 bind double-stranded TTAGGG repeats found at telomeres, while the POT1 protein binds single-stranded TTAGGG repeats found at the very end of the telomeres (2). Together, these proteins function to protect telomeres and ensure proper replication and processing of chromosome ends. Recent studies have shown that TERF2IP is dispensable for maintenance of telomere length, organization of telomeric chromatin, and regulation of telomeric transcription (3,4). However, TERF2IP is required for inhibition of homology-directed repair (HDR), which can create undesirable telomeric sister chromatid exchange (3,4). In addition to its role in telomere maintenance, TERF2IP is also found in the cytoplasm, where it functions as an IκB kinase (IKK) adaptor protein and regulates NF-κB-dependent gene expression (5). TERF2IP forms a complex with IKKs and is critical for proper recruitment of IKKs to and activation of the p65 subunit of NF-κB. Elevated levels of TERF2IP have been found in breast cancer cells with NF-κB hyperactivity, and knockdown of TERF2IP sensitizes these cells to apoptosis, further identifying TERF2IP as a potential cancer therapeutic target (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The breast cancer susceptibility proteins BRCA1 and BRCA2 are frequently mutated in cases of hereditary breast and ovarian cancers and have roles in multiple processes related to DNA damage, repair, cell cycle progression, transcription, ubiquitination, and apoptosis (1-4). BRCA2 has been shown to be required for localization of Rad51 to sites of double stranded breaks (DSBs) in DNA, and cells lacking BRCA1 and BRCA2 cannot repair DSBs through the Rad51-dependent process of homologous recombination (HR) (5). Numerous DNA damage-induced phosphorylation sites on BRCA1 have been identified, including Ser988, 1189, 1387, 1423, 1457, 1524, and 1542, and kinases activated in a cell cycle-dependent manner, including Aurora A and CDK2, can also phosphorylate BRCA1 at Ser308 and Ser1497, respectively (6-10). Cell cycle-dependent phosphorylation of BRCA2 at Ser3291 by CDKs has been proposed as a mechanism to switch off HR as cells progress beyond S-phase by blocking the carboxy terminal Rad51 binding site (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: DNA double-strand breaks (DSBs) are potentially hazardous lesions that can be induced by ionizing radiation (IR), radiomimetic chemicals, or DNA replication inhibitors. Cells recognize and repair DSBs via two distinct but partly overlapping signaling pathways, nonhomologous end joining (NHEJ) and homologous recombination (HR). DNA repair via the HR pathway is restricted to S and G2 phases of the cell cycle, while NHEJ can occur during any phase. Defects in both pathways have been associated with human disease, including cancer (1).Artemis is a ubiquitously expressed NHEJ factor that exhibits endonuclease activity. Artemis functions in DNA repair by promoting nonhomologous end joining (2), as well as in cell cycle checkpoint control through ATM/ATR signaling (3).NHEJ machinery is also utilized in V(D)J recombination, a process that generates diversity in immunoglobulin and T cell receptor genes, and artemis is a key factor in this process (4,5). Mutations in the corresponding artemis gene (DCLRE1C) are associated with a radiosensitive type of severe combined immunodeficiency (SCID) in humans (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: DNA repair systems operate in all living cells to manage a variety of DNA lesions. Nucleotide excision repair (NER) is implemented in cases where bulky helix-distorting lesions occur, such as those brought about by UV and certain chemicals (1). Excision Repair Cross Complementing 1 (ERCC1) forms a complex with ERCC4/XPF, which acts as the 5’ endonuclease required to excise the lesion (2). ERCC1-XPF is also required for repair of DNA interstrand crosslinks (ICLs) (3) and involved in repair of double strand breaks (4). Research studies have shown that expression of ERCC1 is related to survival rate and response to chemotherapeutic drugs in several human cancers including non-small cell lung cancer (NSCLC) (5,6).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: XPB and XPD are ATPase/helicase subunits of the TFIIH complex that are involved in nucleotide excision repair (NER) to remove lesions and photoproducts generated by UV light (1). XPB and XPD are 3’-5’ and 5’-3’ DNA helicases, respectively, that play a role in opening of the DNA damage site to facilitate repair (2,3). XPB and XPD both play an important role in maintaining genomic stability, and researchers have linked mutations of these proteins to Xeroderma Pigmentosum (XP) and Trichothiodystrophy (TTD). XP patients have abnormalities in skin pigmentation and are highly susceptible to skin cancers, while TTD patients exhibit symptoms such as brittle hair, neurological abnormalities, and mild photosensitivity (4). In addition to their role in NER, XPB and XPD are involved in transcription initiation as part of the TFIIH core complex (5). The helicase activity of XPB unwinds DNA around the transcription start site to facilitate RNA polymerase II promoter clearance and initiation of transcription (6). XPD plays a structural role linking core TFIIH components with the cdk-activating kinase (CAK) complex that phosphorylates the C-terminus of the largest subunit of RNA polymerase II, leading to transcription initiation (7).

$262
3 nmol
300 µl
SignalSilence® ERCC1 siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit ERCC1 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce protein expression by western analysis.
REACTIVITY
Human

Background: DNA repair systems operate in all living cells to manage a variety of DNA lesions. Nucleotide excision repair (NER) is implemented in cases where bulky helix-distorting lesions occur, such as those brought about by UV and certain chemicals (1). Excision Repair Cross Complementing 1 (ERCC1) forms a complex with ERCC4/XPF, which acts as the 5’ endonuclease required to excise the lesion (2). ERCC1-XPF is also required for repair of DNA interstrand crosslinks (ICLs) (3) and involved in repair of double strand breaks (4). Research studies have shown that expression of ERCC1 is related to survival rate and response to chemotherapeutic drugs in several human cancers including non-small cell lung cancer (NSCLC) (5,6).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: DNA repair systems operate in all living cells to manage a variety of DNA lesions. Nucleotide excision repair (NER) is implemented in cases where bulky helix-distorting lesions occur, such as those brought about by UV and certain chemicals (1). Excision Repair Cross Complementing 1 (ERCC1) forms a complex with ERCC4/XPF, which acts as the 5’ endonuclease required to excise the lesion (2). ERCC1-XPF is also required for repair of DNA interstrand crosslinks (ICLs) (3) and involved in repair of double strand breaks (4). Research studies have shown that expression of ERCC1 is related to survival rate and response to chemotherapeutic drugs in several human cancers including non-small cell lung cancer (NSCLC) (5,6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Rat

Application Methods: Western Blotting

Background: DNA repair systems operate in all living cells to manage a variety of DNA lesions. Nucleotide excision repair (NER) is implemented in cases where bulky helix-distorting lesions occur, such as those brought about by UV and certain chemicals (1). Excision Repair Cross Complementing 4 (ERCC4, XPF) forms a complex with the ERCC1 excision repair protein to create an essential 5’ endonuclease responsible for lesion excision (2). ERCC1-XPF is also required for repair of DNA interstrand crosslinks (ICLs) (3) and involved in repair of double strand breaks (4). Mutations in the corresponding XPF gene cause specific forms of xeroderma pigmentosum, Cockayne syndrome, and Fanconi anemia, while altered XPF protein levels may be associated with disease progression and response to treatment in specific human cancers (5,6).