20% off purchase of 3 or more products* | Learn More >>

Human Docking

$303
100 µl
$717
300 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The ezrin, radixin, and moesin (ERM) proteins function as linkers between the plasma membrane and the actin cytoskeleton and are involved in cell adhesion, membrane ruffling, and microvilli formation (1). ERM proteins undergo intra or intermolecular interaction between their amino- and carboxy-terminal domains, existing as inactive cytosolic monomers or dimers (2). Phosphorylation at a carboxy-terminal threonine residue (Thr567 of ezrin, Thr564 of radixin, Thr558 of moesin) disrupts the amino- and carboxy-terminal association and may play a key role in regulating ERM protein conformation and function (3,4). Phosphorylation at Thr567 of ezrin is required for cytoskeletal rearrangements and oncogene-induced transformation (5). Ezrin is also phosphorylated at tyrosine residues upon growth factor stimulation. Phosphorylation of Tyr353 of ezrin transmits a survival signal during epithelial differentiation (6).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Peptide ELISA (DELFIA), Western Blotting

Background: The ezrin, radixin, and moesin (ERM) proteins function as linkers between the plasma membrane and the actin cytoskeleton and are involved in cell adhesion, membrane ruffling, and microvilli formation (1). ERM proteins undergo intra or intermolecular interaction between their amino- and carboxy-terminal domains, existing as inactive cytosolic monomers or dimers (2). Phosphorylation at a carboxy-terminal threonine residue (Thr567 of ezrin, Thr564 of radixin, Thr558 of moesin) disrupts the amino- and carboxy-terminal association and may play a key role in regulating ERM protein conformation and function (3,4). Phosphorylation at Thr567 of ezrin is required for cytoskeletal rearrangements and oncogene-induced transformation (5). Ezrin is also phosphorylated at tyrosine residues upon growth factor stimulation. Phosphorylation of Tyr353 of ezrin transmits a survival signal during epithelial differentiation (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Syntaxin 1A (STX1A) is a SNARE protein involved in intracellular membrane fusion, including synaptic vesicle fusion (1). At the synapse, syntaxin 1 is located at the presynaptic plasma membrane and is therefore categorized as a t-SNARE protein (2). The amino-terminal domain of syntaxin 1 interacts with Munc18-1 and this interaction is essential for synaptic vesicle fusion (3). Although originally characterized from neural tissues, research studies have demonstrated syntaxin 1A expression in exocrine tissues such as pancreatic islets (4) where it negatively regulates insulin release (5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The ezrin, radixin, and moesin (ERM) proteins function as linkers between the plasma membrane and the actin cytoskeleton and are involved in cell adhesion, membrane ruffling, and microvilli formation (1). ERM proteins undergo intra or intermolecular interaction between their amino- and carboxy-terminal domains, existing as inactive cytosolic monomers or dimers (2). Phosphorylation at a carboxy-terminal threonine residue (Thr567 of ezrin, Thr564 of radixin, Thr558 of moesin) disrupts the amino- and carboxy-terminal association and may play a key role in regulating ERM protein conformation and function (3,4). Phosphorylation at Thr567 of ezrin is required for cytoskeletal rearrangements and oncogene-induced transformation (5). Ezrin is also phosphorylated at tyrosine residues upon growth factor stimulation. Phosphorylation of Tyr353 of ezrin transmits a survival signal during epithelial differentiation (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Rab7 and Rab9 are members of the Ras superfamily of small Rab GTPases (1). Both proteins are located in late endosomes, but exert different functions. Rab7 associates with the RIPL effector protein to control membrane trafficking from early to late endosome and to lysosomes (2,3). Rab7 also helps to regulate growth receptor endocytic trafficking and degradation (3,4), and maturation of phagosome and autophagic vacuoles (4-6). Rab9 interacts with its effector proteins p40 and TIP47 (7,8) to promote the MPR (mannose 6-phosphate receptor)-associated lysosomal enzyme transport between late endosomes and the trans Golgi network (9,10).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Several protein-protein interactions are essential to membrane fusion during endocytosis. Membrane fusion requires interaction among SNARE1 proteins associated with both donor and acceptor membranes (1,2). Following membrane fusion, the α-SNAP cytoplasmic adapter protein binds to the SNARE complex. N-ethylmaleimide-sensitive factor (NSF), a hexameric ATPase, then associates with the α-SNAP/SNARE complex to mediate SNARE disassembly during membrane fusion (3,4). The ATPase activity of NSF induces a conformational change in the α-SNAP/SNARE complex that leads to its dissociation from the membrane, membrane fusion and eventual recycling of the SNARE complex for subsequent membrane fusion (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Nucleoporin 98 kDa (NUP98) is a component of the nuclear pore complex. It is expressed as three different precursors that undergo auto-cleavage to generate a common amino-terminal 98 kDa peptide (NUP98) and carboxy-terminal 6, 96 (NUP96) and 88 (p88) kDa peptides (1,2). NUP98 contains FG and GLFG repeat domains at its amino terminus and a RNA-binding domain in its carboxy terminus (3). The NUP98 gene is localized on chromosome 11p15.5, a region frequently rearranged in leukemias. To date, 15 fusion partners have been identified for NUP98 (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Nucleoporin 98 kDa (NUP98) is a component of the nuclear pore complex. It is expressed as three different precursors that undergo auto-cleavage to generate a common amino-terminal 98 kDa peptide (NUP98) and carboxy-terminal 6, 96 (NUP96) and 88 (p88) kDa peptides (1,2). NUP98 contains FG and GLFG repeat domains at its amino terminus and a RNA-binding domain in its carboxy terminus (3). The NUP98 gene is localized on chromosome 11p15.5, a region frequently rearranged in leukemias. To date, 15 fusion partners have been identified for NUP98 (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Nucleoporin 98 kDa (NUP98) is a component of the nuclear pore complex. It is expressed as three different precursors that undergo auto-cleavage to generate a common amino-terminal 98 kDa peptide (NUP98) and carboxy-terminal 6, 96 (NUP96) and 88 (p88) kDa peptides (1,2). NUP98 contains FG and GLFG repeat domains at its amino terminus and a RNA-binding domain in its carboxy terminus (3). The NUP98 gene is localized on chromosome 11p15.5, a region frequently rearranged in leukemias. To date, 15 fusion partners have been identified for NUP98 (4,5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Nucleoporin 98 kDa (NUP98) is a component of the nuclear pore complex. It is expressed as three different precursors that undergo auto-cleavage to generate a common amino-terminal 98 kDa peptide (NUP98) and carboxy-terminal 6, 96 (NUP96) and 88 (p88) kDa peptides (1,2). NUP98 contains FG and GLFG repeat domains at its amino terminus and a RNA-binding domain in its carboxy terminus (3). The NUP98 gene is localized on chromosome 11p15.5, a region frequently rearranged in leukemias. To date, 15 fusion partners have been identified for NUP98 (4,5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The ezrin, radixin, and moesin (ERM) proteins function as linkers between the plasma membrane and the actin cytoskeleton and are involved in cell adhesion, membrane ruffling, and microvilli formation (1). ERM proteins undergo intra or intermolecular interaction between their amino- and carboxy-terminal domains, existing as inactive cytosolic monomers or dimers (2). Phosphorylation at a carboxy-terminal threonine residue (Thr567 of ezrin, Thr564 of radixin, Thr558 of moesin) disrupts the amino- and carboxy-terminal association and may play a key role in regulating ERM protein conformation and function (3,4). Phosphorylation at Thr567 of ezrin is required for cytoskeletal rearrangements and oncogene-induced transformation (5). Ezrin is also phosphorylated at tyrosine residues upon growth factor stimulation. Phosphorylation of Tyr353 of ezrin transmits a survival signal during epithelial differentiation (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The ezrin, radixin, and moesin (ERM) proteins function as linkers between the plasma membrane and the actin cytoskeleton and are involved in cell adhesion, membrane ruffling, and microvilli formation (1). ERM proteins undergo intra or intermolecular interaction between their amino- and carboxy-terminal domains, existing as inactive cytosolic monomers or dimers (2). Phosphorylation at a carboxy-terminal threonine residue (Thr567 of ezrin, Thr564 of radixin, Thr558 of moesin) disrupts the amino- and carboxy-terminal association and may play a key role in regulating ERM protein conformation and function (3,4). Phosphorylation at Thr567 of ezrin is required for cytoskeletal rearrangements and oncogene-induced transformation (5). Ezrin is also phosphorylated at tyrosine residues upon growth factor stimulation. Phosphorylation of Tyr353 of ezrin transmits a survival signal during epithelial differentiation (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The ezrin, radixin, and moesin (ERM) proteins function as linkers between the plasma membrane and the actin cytoskeleton and are involved in cell adhesion, membrane ruffling, and microvilli formation (1). ERM proteins undergo intra or intermolecular interaction between their amino- and carboxy-terminal domains, existing as inactive cytosolic monomers or dimers (2). Phosphorylation at a carboxy-terminal threonine residue (Thr567 of ezrin, Thr564 of radixin, Thr558 of moesin) disrupts the amino- and carboxy-terminal association and may play a key role in regulating ERM protein conformation and function (3,4). Phosphorylation at Thr567 of ezrin is required for cytoskeletal rearrangements and oncogene-induced transformation (5). Ezrin is also phosphorylated at tyrosine residues upon growth factor stimulation. Phosphorylation of Tyr353 of ezrin transmits a survival signal during epithelial differentiation (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The ezrin, radixin, and moesin (ERM) proteins function as linkers between the plasma membrane and the actin cytoskeleton and are involved in cell adhesion, membrane ruffling, and microvilli formation (1). ERM proteins undergo intra or intermolecular interaction between their amino- and carboxy-terminal domains, existing as inactive cytosolic monomers or dimers (2). Phosphorylation at a carboxy-terminal threonine residue (Thr567 of ezrin, Thr564 of radixin, Thr558 of moesin) disrupts the amino- and carboxy-terminal association and may play a key role in regulating ERM protein conformation and function (3,4). Phosphorylation at Thr567 of ezrin is required for cytoskeletal rearrangements and oncogene-induced transformation (5). Ezrin is also phosphorylated at tyrosine residues upon growth factor stimulation. Phosphorylation of Tyr353 of ezrin transmits a survival signal during epithelial differentiation (6).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunoprecipitation, Western Blotting

Background: Several protein-protein interactions are essential to membrane fusion during endocytosis. Membrane fusion requires interaction among SNARE1 proteins associated with both donor and acceptor membranes (1,2). Following membrane fusion, the α-SNAP cytoplasmic adapter protein binds to the SNARE complex. N-ethylmaleimide-sensitive factor (NSF), a hexameric ATPase, then associates with the α-SNAP/SNARE complex to mediate SNARE disassembly during membrane fusion (3,4). The ATPase activity of NSF induces a conformational change in the α-SNAP/SNARE complex that leads to its dissociation from the membrane, membrane fusion and eventual recycling of the SNARE complex for subsequent membrane fusion (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: The Rab family of proteins includes small, monomeric GTPases essential for regulating intracellular vesicle trafficking. Members of the Rab3 subfamily, including Rab3A-3D, are involved in the exocytosis of neurotransmitters and hormones (1). Rab3A is primarily expressed in neurons (2), neuroendocrine cells (such as rat PC-12 cells), and in human pancreatic β cells (3,4). By acting as a molecular switch between active GTP-bound Rab3A and the inactive GDP-bound form, Rab3A inhibits synaptic vesicle and chromaffin granule secretion during late membrane release (5,6). Loss-of-function studies suggest Rab3A is involved in controlling synaptic vesicle targeting and docking at the active zone (7). Through binding to its direct effector Rabphillin, Rab3A also orchestrates the coupling between synaptic vesicle exocytosis and endocytosis (8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: ROCK (Rho-associated kinase), a family of serine/threonine kinases, is an important downstream target of Rho-GTPase and plays an important role in Rho-mediated signaling. Two isoforms of ROCK have been identified: ROCK1 and ROCK2. ROCK is composed of N-terminal catalytic, coiled-coil, and C-terminal PH (pleckstrin homology) domains. The C-terminus of ROCK negatively regulates its kinase activity (1,2). Caspase-3-induced cleavage of ROCK1 and direct cleavage of ROCK2 by granzyme B (grB) activates ROCK and leads to phosphorylation of myosin light chain and inhibition of myosin phosphatase (3). This phosphorylation may account for the mechanism by which Rho regulates cytokinesis, cell motility, cell membrane blebbing during apoptosis, and smooth muscle contraction (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Rab10 is a member of the Ras superfamily of small Rab GTPases (1) that interacts with Mss4, myosin V (Va, Vb and Vc) and GDI as it helps mediate sorting among cellular endosomes (2-4). Mutation analysis and GFP-fusion protein expression of Rab10 in MDCK cells determined that Rab10 plays a regulatory role in membrane protein transport between early endosomes and basolateral compartments (5,6). Rab10 associates with the GLUT4 complex as a target for AS160 and is required for insulin-stimulated GLUT4 translocation in adipocytes (7,8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The 25 kDa synaptosome-associated protein (SNAP25) is a target membrane soluble, N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) that is found on neuronal presynaptic membranes. SNAP25 forms a core complex with the SNARE proteins syntaxin and synaptobrevin to mediate synaptic vesicle fusion with the plasma membrane during Ca2+-dependent exocytosis (1). This complex is responsible for exocytosis of the neurotransmitter γ-aminobutyric acid (GABA). Neurotransmitter release is inhibited by proteolysis of SNAP25 by botulinum toxins A and E (2). SNAP25 plays a secondary role as a Q-SNARE involved in endosome fusion; the protein is associated with genetic susceptibility to attention-deficit hyperactivity disorder (ADHD) (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The 25 kDa synaptosome-associated protein (SNAP25) is a target membrane soluble, N-ethylmaleimide-sensitive factor attachment protein receptor (t-SNARE) that is found on neuronal presynaptic membranes. SNAP25 forms a core complex with the SNARE proteins syntaxin and synaptobrevin to mediate synaptic vesicle fusion with the plasma membrane during Ca2+-dependent exocytosis (1). This complex is responsible for exocytosis of the neurotransmitter γ-aminobutyric acid (GABA). Neurotransmitter release is inhibited by proteolysis of SNAP25 by botulinum toxins A and E (2). SNAP25 plays a secondary role as a Q-SNARE involved in endosome fusion; the protein is associated with genetic susceptibility to attention-deficit hyperactivity disorder (ADHD) (3).