Interested in promotions? | Click here >>

Human Establishment of Nucleus Localization

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Na+/H+ exchanger regulatory factor (NHERF1 or EBP-50) is one of several related PDZ domain-containing proteins (1). NHERF1 was first identified as a necessary cofactor for cyclic AMP-associated inhibition of Na+/ H+ exchanger isoform 3 (NHE3) (2). NHERF1 is a multifunctional adaptor protein that interacts with receptors and ion transporters via its PDZ domains, and with the ERM family of proteins, including merlin, via its carboxy-terminus (2,3). NHERF1 may play an important role in breast cancer. Estrogen has been found to induce NHERF1 in estrogen receptor-positive breast cancer cells (2,3). Furthermore, NHERF1 has been shown to bind to PDGFR, which is activated in breast carcinomas. NHERF1 has been found to promote the formation of a ternary complex containing PTEN, NHERF1, and PDGFR. Therefore, NHERF1 may function to recruit PTEN to PDGFR to inhibit the activation of PI3K/Akt signaling in normal cells; this mechanism may be disrupted in cancer (4). NHERF1 also binds to the cystic fibrosis transmembrane conductance regulator (CFTR), which functions as an ion channel and has disease-causing mutations in cystic fibrosis (5). Other proposed functions of NHERF1 include testicular differentiation, endosomal recycling, membrane targeting, protein sorting, and trafficking (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Na+/H+ exchanger regulatory factor (NHERF1 or EBP-50) is one of several related PDZ domain-containing proteins (1). NHERF1 was first identified as a necessary cofactor for cyclic AMP-associated inhibition of Na+/ H+ exchanger isoform 3 (NHE3) (2). NHERF1 is a multifunctional adaptor protein that interacts with receptors and ion transporters via its PDZ domains, and with the ERM family of proteins, including merlin, via its carboxy-terminus (2,3). NHERF1 may play an important role in breast cancer. Estrogen has been found to induce NHERF1 in estrogen receptor-positive breast cancer cells (2,3). Furthermore, NHERF1 has been shown to bind to PDGFR, which is activated in breast carcinomas. NHERF1 has been found to promote the formation of a ternary complex containing PTEN, NHERF1, and PDGFR. Therefore, NHERF1 may function to recruit PTEN to PDGFR to inhibit the activation of PI3K/Akt signaling in normal cells; this mechanism may be disrupted in cancer (4). NHERF1 also binds to the cystic fibrosis transmembrane conductance regulator (CFTR), which functions as an ion channel and has disease-causing mutations in cystic fibrosis (5). Other proposed functions of NHERF1 include testicular differentiation, endosomal recycling, membrane targeting, protein sorting, and trafficking (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Na+/H+ exchanger regulatory factor (NHERF1 or EBP-50) is one of several related PDZ domain-containing proteins (1). NHERF1 was first identified as a necessary cofactor for cyclic AMP-associated inhibition of Na+/ H+ exchanger isoform 3 (NHE3) (2). NHERF1 is a multifunctional adaptor protein that interacts with receptors and ion transporters via its PDZ domains, and with the ERM family of proteins, including merlin, via its carboxy-terminus (2,3). NHERF1 may play an important role in breast cancer. Estrogen has been found to induce NHERF1 in estrogen receptor-positive breast cancer cells (2,3). Furthermore, NHERF1 has been shown to bind to PDGFR, which is activated in breast carcinomas. NHERF1 has been found to promote the formation of a ternary complex containing PTEN, NHERF1, and PDGFR. Therefore, NHERF1 may function to recruit PTEN to PDGFR to inhibit the activation of PI3K/Akt signaling in normal cells; this mechanism may be disrupted in cancer (4). NHERF1 also binds to the cystic fibrosis transmembrane conductance regulator (CFTR), which functions as an ion channel and has disease-causing mutations in cystic fibrosis (5). Other proposed functions of NHERF1 include testicular differentiation, endosomal recycling, membrane targeting, protein sorting, and trafficking (6).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Focal adhesion kinase (FAK) is a widely expressed cytoplasmic protein tyrosine kinase involved in integrin-mediated signal transduction. It plays an important role in the control of several biological processes, including cell spreading, migration, and survival (1). Activation of FAK by integrin clustering leads to autophosphorylation at Tyr397, which is a binding site for the Src family kinases PI3K and PLCγ (2-5). Recruitment of Src family kinases results in the phosphorylation of Tyr407, Tyr576, and Tyr577 in the catalytic domain, and Tyr871 and Tyr925 in the carboxy-terminal region of FAK (6,7).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Focal adhesion kinase (FAK) is a widely expressed cytoplasmic protein tyrosine kinase involved in integrin-mediated signal transduction. It plays an important role in the control of several biological processes, including cell spreading, migration, and survival (1). Activation of FAK by integrin clustering leads to autophosphorylation at Tyr397, which is a binding site for the Src family kinases PI3K and PLCγ (2-5). Recruitment of Src family kinases results in the phosphorylation of Tyr407, Tyr576, and Tyr577 in the catalytic domain, and Tyr871 and Tyr925 in the carboxy-terminal region of FAK (6,7).

$262
3 nmol
300 µl
SignalSilence® FAK siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit FAK expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Focal adhesion kinase (FAK) is a widely expressed cytoplasmic protein tyrosine kinase involved in integrin-mediated signal transduction. It plays an important role in the control of several biological processes, including cell spreading, migration, and survival (1). Activation of FAK by integrin clustering leads to autophosphorylation at Tyr397, which is a binding site for the Src family kinases PI3K and PLCγ (2-5). Recruitment of Src family kinases results in the phosphorylation of Tyr407, Tyr576, and Tyr577 in the catalytic domain, and Tyr871 and Tyr925 in the carboxy-terminal region of FAK (6,7).

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Focal adhesion kinase (FAK) is a widely expressed cytoplasmic protein tyrosine kinase involved in integrin-mediated signal transduction. It plays an important role in the control of several biological processes, including cell spreading, migration, and survival (1). Activation of FAK by integrin clustering leads to autophosphorylation at Tyr397, which is a binding site for the Src family kinases PI3K and PLCγ (2-5). Recruitment of Src family kinases results in the phosphorylation of Tyr407, Tyr576, and Tyr577 in the catalytic domain, and Tyr871 and Tyr925 in the carboxy-terminal region of FAK (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Focal adhesion kinase (FAK) is a widely expressed cytoplasmic protein tyrosine kinase involved in integrin-mediated signal transduction. It plays an important role in the control of several biological processes, including cell spreading, migration, and survival (1). Activation of FAK by integrin clustering leads to autophosphorylation at Tyr397, which is a binding site for the Src family kinases PI3K and PLCγ (2-5). Recruitment of Src family kinases results in the phosphorylation of Tyr407, Tyr576, and Tyr577 in the catalytic domain, and Tyr871 and Tyr925 in the carboxy-terminal region of FAK (6,7).

$303
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Mouse, Pig, Rat

Application Methods: Western Blotting

Background: Focal adhesion kinase (FAK) is a widely expressed cytoplasmic protein tyrosine kinase involved in integrin-mediated signal transduction. It plays an important role in the control of several biological processes, including cell spreading, migration, and survival (1). Activation of FAK by integrin clustering leads to autophosphorylation at Tyr397, which is a binding site for the Src family kinases PI3K and PLCγ (2-5). Recruitment of Src family kinases results in the phosphorylation of Tyr407, Tyr576, and Tyr577 in the catalytic domain, and Tyr871 and Tyr925 in the carboxy-terminal region of FAK (6,7).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Pig, Rat

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Focal adhesion kinase (FAK) is a widely expressed cytoplasmic protein tyrosine kinase involved in integrin-mediated signal transduction. It plays an important role in the control of several biological processes, including cell spreading, migration, and survival (1). Activation of FAK by integrin clustering leads to autophosphorylation at Tyr397, which is a binding site for the Src family kinases PI3K and PLCγ (2-5). Recruitment of Src family kinases results in the phosphorylation of Tyr407, Tyr576, and Tyr577 in the catalytic domain, and Tyr871 and Tyr925 in the carboxy-terminal region of FAK (6,7).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Focal adhesion kinase (FAK) is a widely expressed cytoplasmic protein tyrosine kinase involved in integrin-mediated signal transduction. It plays an important role in the control of several biological processes, including cell spreading, migration, and survival (1). Activation of FAK by integrin clustering leads to autophosphorylation at Tyr397, which is a binding site for the Src family kinases PI3K and PLCγ (2-5). Recruitment of Src family kinases results in the phosphorylation of Tyr407, Tyr576, and Tyr577 in the catalytic domain, and Tyr871 and Tyr925 in the carboxy-terminal region of FAK (6,7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Importins belong to the karyopherin family of nuclear transport proteins (1) and are divided into two subgroups: importin α and importin β. Importins mainly function in nuclear protein import and export (2,3). Importin β1 (also known as karyopherin β1, Kpnβ1, Kpnb1, or p97) plays a key role in the nuclear import process (1-3). Nuclear import via importin β1 association with adaptor importin α (also known as karyopherin α, or Kpnα) is an essential component of the classical nuclear localization signal (NLS) pathway (4). Importin α directly recognizes the NLS present in the cargo target, prompting complex formation with importin β1. The cargo:importin α:importin β1 complex is transported across the nuclear pore complex (NPC) into the nucleus, where it is dissociated by the binding of RanGTP (1-4). Nuclear import directly via importin β1 can also occur by importin β1 recognition of the cargo protein, bypassing importin α involvement. In both cases, the importin β1/target protein interaction is mediated through the binding of importin β1 HEAT repeats with the target protein sequences (either the cargo protein itself or importin α) (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Importins belong to the karyopherin family of nuclear transport proteins (1) and are divided into two subgroups: importin α and importin β. Importins mainly function in nuclear protein import and export (2,3). Importin β1 (also known as karyopherin β1, Kpnβ1, Kpnb1, or p97) plays a key role in the nuclear import process (1-3). Nuclear import via importin β1 association with adaptor importin α (also known as karyopherin α, or Kpnα) is an essential component of the classical nuclear localization signal (NLS) pathway (4). Importin α directly recognizes the NLS present in the cargo target, prompting complex formation with importin β1. The cargo:importin α:importin β1 complex is transported across the nuclear pore complex (NPC) into the nucleus, where it is dissociated by the binding of RanGTP (1-4). Nuclear import directly via importin β1 can also occur by importin β1 recognition of the cargo protein, bypassing importin α involvement. In both cases, the importin β1/target protein interaction is mediated through the binding of importin β1 HEAT repeats with the target protein sequences (either the cargo protein itself or importin α) (5).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Filamins are a family of dimeric actin binding proteins that function as structural components of cell adhesion sites. They also serve as a scaffold for subcellular targeting of signaling molecules (1). The actin binding domain (α-actinin domain) located at the amino terminus is followed by as many as 24 tandem repeats of about 96 residues and the dimerization domain is located at the carboxy terminus. In addition to actin filaments, filamins associate with other structural and signaling molecules such as β-integrins, Rho/Rac/Cdc42, PKC and the insulin receptor, primarily through the carboxy-terminal dimerization domain (1-3). Filamin A, the most abundant, and filamin B are widely expressed isoforms, while filamin C is predominantly expressed in muscle (1). Filamin A is phosphorylated by PAK1 at Ser2152, which is required for PAK1-mediated actin cytoskeleton reorganization (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The 14-3-3 family of proteins plays a key regulatory role in signal transduction, checkpoint control, apoptotic and nutrient-sensing pathways (1,2). 14-3-3 proteins are highly conserved and ubiquitously expressed. There are at least seven isoforms, β, γ, ε, σ, ζ, τ, and η that have been identified in mammals. The initially described α and δ isoforms are confirmed to be phosphorylated forms of β and ζ, respectively (3). Through their amino-terminal α helical region, 14-3-3 proteins form homo- or heterodimers that interact with a wide variety of proteins: transcription factors, metabolic enzymes, cytoskeletal proteins, kinases, phosphatases, and other signaling molecules (3,4). The interaction of 14-3-3 proteins with their targets is primarily through a phospho-Ser/Thr motif. However, binding to divergent phospho-Ser/Thr motifs, as well as phosphorylation independent interactions has been observed (4). 14-3-3 binding masks specific sequences of the target protein, and therefore, modulates target protein localization, phosphorylation state, stability, and molecular interactions (1-4). 14-3-3 proteins may also induce target protein conformational changes that modify target protein function (4,5). Distinct temporal and spatial expression patterns of 14-3-3 isoforms have been observed in development and in acute response to extracellular signals and drugs, suggesting that 14-3-3 isoforms may perform different functions despite their sequence similarities (4). Several studies suggest that 14-3-3 isoforms are differentially regulated in cancer and neurological syndromes (2,3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Filamins are a family of dimeric actin binding proteins that function as structural components of cell adhesion sites. They also serve as a scaffold for subcellular targeting of signaling molecules (1). The actin binding domain (α-actinin domain) located at the amino terminus is followed by as many as 24 tandem repeats of about 96 residues and the dimerization domain is located at the carboxy terminus. In addition to actin filaments, filamins associate with other structural and signaling molecules such as β-integrins, Rho/Rac/Cdc42, PKC and the insulin receptor, primarily through the carboxy-terminal dimerization domain (1-3). Filamin A, the most abundant, and filamin B are widely expressed isoforms, while filamin C is predominantly expressed in muscle (1). Filamin A is phosphorylated by PAK1 at Ser2152, which is required for PAK1-mediated actin cytoskeleton reorganization (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Bovine, Human, Monkey, Mouse, Pig, Rat

Application Methods: Western Blotting

Background: The 14-3-3 family of proteins plays a key regulatory role in signal transduction, checkpoint control, apoptotic and nutrient-sensing pathways (1,2). 14-3-3 proteins are highly conserved and ubiquitously expressed. There are at least seven isoforms, β, γ, ε, σ, ζ, τ, and η that have been identified in mammals. The initially described α and δ isoforms are confirmed to be phosphorylated forms of β and ζ, respectively (3). Through their amino-terminal α helical region, 14-3-3 proteins form homo- or heterodimers that interact with a wide variety of proteins: transcription factors, metabolic enzymes, cytoskeletal proteins, kinases, phosphatases, and other signaling molecules (3,4). The interaction of 14-3-3 proteins with their targets is primarily through a phospho-Ser/Thr motif. However, binding to divergent phospho-Ser/Thr motifs, as well as phosphorylation independent interactions has been observed (4). 14-3-3 binding masks specific sequences of the target protein, and therefore, modulates target protein localization, phosphorylation state, stability, and molecular interactions (1-4). 14-3-3 proteins may also induce target protein conformational changes that modify target protein function (4,5). Distinct temporal and spatial expression patterns of 14-3-3 isoforms have been observed in development and in acute response to extracellular signals and drugs, suggesting that 14-3-3 isoforms may perform different functions despite their sequence similarities (4). Several studies suggest that 14-3-3 isoforms are differentially regulated in cancer and neurological syndromes (2,3).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Scribble (Scrib) was originally identified in a genetic screen in Drosophila along with cell polarity determinants Discs Large (Dlg) and Lethal giant larvae (Lgl). Drosophila mutants homozygous for these genes share similar phenotypes, including the loss of apicobasal cell polarity and neoplastic tissue overgrowth. These phenotypic similarities suggest that these three proteins function in a common pathway important for establishing and maintaining apicobasal polarity in epithelial cells (1,2). Scribble contains many leucine-rich repeats and PDZ domains important for localizing scribble to adherens junctions and basolateral regions of mammalian epithelial cells (3). Scribble reportedly binds β-catenin, APC, E-cadherin and the E6 protein from high-risk virus type of HPV through a short motif important for E6-induced cell transformation (4-8). Overexpression of scribble inhibits transformation of rodent epithelial cells by HPV E6/7 proteins (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: Scribble (Scrib) was originally identified in a genetic screen in Drosophila along with cell polarity determinants Discs Large (Dlg) and Lethal giant larvae (Lgl). Drosophila mutants homozygous for these genes share similar phenotypes, including the loss of apicobasal cell polarity and neoplastic tissue overgrowth. These phenotypic similarities suggest that these three proteins function in a common pathway important for establishing and maintaining apicobasal polarity in epithelial cells (1,2). Scribble contains many leucine-rich repeats and PDZ domains important for localizing scribble to adherens junctions and basolateral regions of mammalian epithelial cells (3). Scribble reportedly binds β-catenin, APC, E-cadherin and the E6 protein from high-risk virus type of HPV through a short motif important for E6-induced cell transformation (4-8). Overexpression of scribble inhibits transformation of rodent epithelial cells by HPV E6/7 proteins (8).