Interested in promotions? | Click here >>

Human Estrogen Receptor Binding

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The evolutionarily conserved CCR4-NOT (CNOT) complex regulates mRNA metabolism in eukaryotic cells (1). This regulation occurs at different levels of mRNA synthesis and degradation, including transcription initiation, elongation, deadenylation, and degradation (1). Multiple components, including CNOT1, CNOT2, CNOT3, CNOT4, CNOT6, CNOT6L, CNOT7, CNOT8, CNOT9, and CNOT10 have been identified in this complex (2). In addition, subunit composition of this complex has been shown to vary among different tissues (3).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The evolutionarily conserved CCR4-NOT (CNOT) complex regulates mRNA metabolism in eukaryotic cells (1). This regulation occurs at different levels of mRNA synthesis and degradation, including transcription initiation, elongation, deadenylation, and degradation (1). Multiple components, including CNOT1, CNOT2, CNOT3, CNOT4, CNOT6, CNOT6L, CNOT7, CNOT8, CNOT9, and CNOT10 have been identified in this complex (2). In addition, subunit composition of this complex has been shown to vary among different tissues (3).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Chromatin IP-seq, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: NKX3.1 is a homeobox transcription factor that in mammals plays a defining role in embryonic prostate morphogenesis. The expression of mammalian NKX3.1 is androgen-dependent, restricted primarily to developing and mature prostate epithelium, and is frequently reduced or lost in prostate cancer (1-3). The human NKX3.1 gene is located on chromsome 8p21.2, within a region that shows loss of heterozygosity (LOH) in >50% of prostate cancer cases (2). Allelic loss at the NKX3.1 locus is also common in high grade Prostate Intraepithelial Neoplasia (PIN), thought to be a putative precursor lesion to invasive prostate adenocarcinomas, suggesting that LOH at the NKX3.1 locus is a critical early step in prostate cancer development (4). Notably, the remaining NKX3.1 allele is intact in the majority of LOH cases, leading to the suggestion that NKX3.1 functions as a haploinsufficient tumor suppressor (4-6). Due to its highly restricted expression in prostate epithelial cells, NKX3.1 has been suggested as a diagnostic marker of prostate carcinoma (7), and may have additional utility as a biomarker of metastatic lesions originating in the prostate (8).

$129
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: NKX3.1 is a homeobox transcription factor that in mammals plays a defining role in embryonic prostate morphogenesis. The expression of mammalian NKX3.1 is androgen-dependent, restricted primarily to developing and mature prostate epithelium, and is frequently reduced or lost in prostate cancer (1-3). The human NKX3.1 gene is located on chromsome 8p21.2, within a region that shows loss of heterozygosity (LOH) in >50% of prostate cancer cases (2). Allelic loss at the NKX3.1 locus is also common in high grade Prostate Intraepithelial Neoplasia (PIN), thought to be a putative precursor lesion to invasive prostate adenocarcinomas, suggesting that LOH at the NKX3.1 locus is a critical early step in prostate cancer development (4). Notably, the remaining NKX3.1 allele is intact in the majority of LOH cases, leading to the suggestion that NKX3.1 functions as a haploinsufficient tumor suppressor (4-6). Due to its highly restricted expression in prostate epithelial cells, NKX3.1 has been suggested as a diagnostic marker of prostate carcinoma (7), and may have additional utility as a biomarker of metastatic lesions originating in the prostate (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: DDX5 (DEAD box polypeptide 5), also known as p68, was first identified as a 68 kDa nuclear protein with similarity to translation initiation factor eIF-4A (1). DDX5 is a member of the DEAD box family of putative RNA helicases, defined by the presence of a conserved DEAD (Asp-Glu-Ala-Asp) motif that appears to function primarily in the regulation of RNA secondary structure. DDX5 exhibits ATP-dependent RNA helicase activity (2) and has been identified as a critical subunit of the DROSHA complex that regulates miRNA and rRNA processing (3,4). DDX may also regulate mRNA splicing (5) and has been shown to interact with HDAC1, where it can regulate promoter-specific transcription (6). DDX5 interacts with a diverse group of proteins, including Runx2, p53, Smad3, CBP, and p300 (7-10), suggesting an important role for DDX5 in a multitude of developmental processes. Notably, DDX5 may be involved in growth factor-induced epithelial mesechymal transition (EMT). Phosphorylation of DDX5 at Tyr593 following PDGF stimulation was shown to displace Axin from β-catenin; this prevented phosphorylation of β-catenin by GSK-3β, leading to Wnt-independent nuclear translocation of β-catenin (11) and increased transcription of c-Myc, cyclin D1, and Snai1 (12,13).

$262
3 nmol
300 µl
SignalSilence® DDX5 siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit DDX5 expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: DDX5 (DEAD box polypeptide 5), also known as p68, was first identified as a 68 kDa nuclear protein with similarity to translation initiation factor eIF-4A (1). DDX5 is a member of the DEAD box family of putative RNA helicases, defined by the presence of a conserved DEAD (Asp-Glu-Ala-Asp) motif that appears to function primarily in the regulation of RNA secondary structure. DDX5 exhibits ATP-dependent RNA helicase activity (2) and has been identified as a critical subunit of the DROSHA complex that regulates miRNA and rRNA processing (3,4). DDX may also regulate mRNA splicing (5) and has been shown to interact with HDAC1, where it can regulate promoter-specific transcription (6). DDX5 interacts with a diverse group of proteins, including Runx2, p53, Smad3, CBP, and p300 (7-10), suggesting an important role for DDX5 in a multitude of developmental processes. Notably, DDX5 may be involved in growth factor-induced epithelial mesechymal transition (EMT). Phosphorylation of DDX5 at Tyr593 following PDGF stimulation was shown to displace Axin from β-catenin; this prevented phosphorylation of β-catenin by GSK-3β, leading to Wnt-independent nuclear translocation of β-catenin (11) and increased transcription of c-Myc, cyclin D1, and Snai1 (12,13).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: DDX5 (DEAD box polypeptide 5), also known as p68, was first identified as a 68 kDa nuclear protein with similarity to translation initiation factor eIF-4A (1). DDX5 is a member of the DEAD box family of putative RNA helicases, defined by the presence of a conserved DEAD (Asp-Glu-Ala-Asp) motif that appears to function primarily in the regulation of RNA secondary structure. DDX5 exhibits ATP-dependent RNA helicase activity (2) and has been identified as a critical subunit of the DROSHA complex that regulates miRNA and rRNA processing (3,4). DDX may also regulate mRNA splicing (5) and has been shown to interact with HDAC1, where it can regulate promoter-specific transcription (6). DDX5 interacts with a diverse group of proteins, including Runx2, p53, Smad3, CBP, and p300 (7-10), suggesting an important role for DDX5 in a multitude of developmental processes. Notably, DDX5 may be involved in growth factor-induced epithelial mesechymal transition (EMT). Phosphorylation of DDX5 at Tyr593 following PDGF stimulation was shown to displace Axin from β-catenin; this prevented phosphorylation of β-catenin by GSK-3β, leading to Wnt-independent nuclear translocation of β-catenin (11) and increased transcription of c-Myc, cyclin D1, and Snai1 (12,13).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: The prohibitins PHB1 and PHB2 are highly conserved, multifunctional proteins present in eukaryotic nuclear and mitochondrial compartments (1). Prohibitin-2 (PHB2, REA) was originally identified as an estrogen receptor-specific coregulator. PHB2 directly interacts with hormone-bound estrogen receptor and represses its transcriptional activity through competitive inhibition of Src-1 coactivation of the estrogen receptor (2,3). Together with COUP transcription factors, PHB2 interacts with histone deacetylases HDAC1 and HDAC5 to mediate transcriptional regulation by the estrogen receptor through coupling the deacetylase to the transcription activation complex (4). Prohibitin PHB1/PHB2 heterodimers form large ring complexes on the mitochondrial membrane (5) and act as chaperones to stabilize mitochondrial proteins, such as OPA1 and Hax1, to support mitochondrial morphogenesis and protect against apoptosis (6-8).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated LEF1 (C12A5) Rabbit mAb #2230.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated LEF1 (C12A5) Rabbit mAb #2230
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated LEF1 (C12A5) Rabbit mAb #2230.
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Flow Cytometry

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Chromatin IP-seq, Flow Cytometry, Western Blotting

Background: LEF1 and TCF are members of the high mobility group (HMG) DNA binding protein family of transcription factors that consists of the following: Lymphoid Enhancer Factor 1 (LEF1), T Cell Factor 1 (TCF1/TCF7), TCF3/TCF7L1, and TCF4/TCF7L2 (1). LEF1 and TCF1/TCF7 were originally identified as important factors regulating early lymphoid development (2) and act downstream in Wnt signaling. LEF1 and TCF bind to Wnt response elements to provide docking sites for β-catenin, which translocates to the nucleus to promote the transcription of target genes upon activation of Wnt signaling (3). LEF1 and TCF are dynamically expressed during development and aberrant activation of the Wnt signaling pathway is involved in many types of cancers including colon cancer (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the ligand-activated nuclear receptor superfamily and functions as a transcriptional activator (1). PPARγ is preferentially expressed in adipocytes as well as in vascular smooth muscle cells and macrophage (2). Besides its role in mediating adipogenesis and lipid metabolism (2), PPARγ also modulates insulin sensitivity, cell proliferation and inflammation (3). PPARγ transcriptional activity is inhibited by MAP kinase phosphorylation of PPARγ at Ser84 (4,5).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the ligand-activated nuclear receptor superfamily and functions as a transcriptional activator (1). PPARγ is preferentially expressed in adipocytes as well as in vascular smooth muscle cells and macrophage (2). Besides its role in mediating adipogenesis and lipid metabolism (2), PPARγ also modulates insulin sensitivity, cell proliferation and inflammation (3). PPARγ transcriptional activity is inhibited by MAP kinase phosphorylation of PPARγ at Ser84 (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Chromatin IP, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the ligand-activated nuclear receptor superfamily and functions as a transcriptional activator (1). PPARγ is preferentially expressed in adipocytes as well as in vascular smooth muscle cells and macrophage (2). Besides its role in mediating adipogenesis and lipid metabolism (2), PPARγ also modulates insulin sensitivity, cell proliferation and inflammation (3). PPARγ transcriptional activity is inhibited by MAP kinase phosphorylation of PPARγ at Ser84 (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Peroxisome proliferator-activated receptor γ (PPARγ) is a member of the ligand-activated nuclear receptor superfamily and functions as a transcriptional activator (1). PPARγ is preferentially expressed in adipocytes as well as in vascular smooth muscle cells and macrophage (2). Besides its role in mediating adipogenesis and lipid metabolism (2), PPARγ also modulates insulin sensitivity, cell proliferation and inflammation (3). PPARγ transcriptional activity is inhibited by MAP kinase phosphorylation of PPARγ at Ser84 (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The mediator complex consists of about 25-30 proteins and is thought to facilitate transcription activation by acting as a molecular bridge between the RNA polymerase II (RNAPII) machinery and transcription factors (1). Mediator is recruited to target genes by transcription factors and plays an essential role in the recruitment and stabilization of the RNAPII transcription complex at promoters, as well as the activation of transcription post RNAPII recruitment (1-5). The mediator complex also plays an important role in creating ‘chromatin loops’ that occur as a result of interactions between the transcription factor bound at distal enhancers and RNAPII bound at the proximal promoter, and works to sustain proper chromatin architecture during active transcription (6-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Autophagy is a catabolic process for the autophagosomic-lysosomal degradation of bulk cytoplasmic contents (1,2). It is generally activated by conditions of nutrient deprivation but is also associated with a number of physiological processes including development, differentiation, neurodegeneration, infection, and cancer (3). The molecular machinery of autophagy was largely discovered in yeast and is directed by a number of autophagy-related (Atg) genes.Vacuolar trafficking and autophagy are controlled by the class III type phosphoinositide 3-kinase (PI3K) Vps34, which generates phosphoinositide-3-phosphate (PtdIns3P) (4,5). Atg18 and Atg21 are two related WD-repeat proteins that bind PtdIns3P via a conserved Phe-Arg-Arg-Gly motif (6,7). It has been shown that Atg18 binds to Atg2 and that this complex is directed to vacuolar membranes by its interaction with PtdIns3P (8). Human orthologs of Atg18 and Atg21 were identified as members of the WD-repeat protein Interacting with Phosphoinositides (WIPI) family (9-11). WIPI1 (also called WIPI49) and WIPI2 have been shown to translocate from several vacuolar compartments to LC3-positive autophagosomes during autophagy; this translocation may be used as an autophagy marker (12).