20% off purchase of 3 or more products* | Learn More >>

Human Histone Acetyltransferase Complex

$122
20 µl
$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Chromatin IP, Immunoprecipitation, Western Blotting

Background: CBP (CREB-binding protein) and p300 are highly conserved and functionally related transcriptional co-activators that associate with transcriptional regulators and signaling molecules, integrating multiple signal transduction pathways with the transcriptional machinery (1,2). CBP/p300 also contain histone acetyltransferase (HAT) activity, allowing them to acetylate histones and other proteins (2). Phosphorylation of p300 at Ser89 by PKC represses its transciptional acitivity, and phosphorylation at the same site by AMPK disrupts the association of p300 with nuclear receptors (3,4). Ser1834 phosphorylation of p300 by Akt disrupts its association with C/EBPβ (5). Growth factors induce phosphorylation of CBP at Ser437, which is required for CBP recruitment to the transcription complex (6). CaM kinase IV phosphorylates CBP at Ser302, which is required for CBP-dependent transcriptional activation in the CNS (7). The role of acetylation of CBP/p300 is of particular interest (2,8). Acetylation of p300 at Lys1499 has been demonstrated to enhance its HAT activity and affect a wide variety of signaling events (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: MYST1, also known as mammalian male absent on the first (MOF) and lysine acetyltransferase 8 (KAT8), is a member of the MYST (MOZ, YBF2, SAS2 and Tip60) family of histone acetyltransferases (1,2). As the catalytic subunit of two different histone acetyltransferase complexes, MSL and NSL, MYST1 is responsible for the majority of histone H4 lysine 16 acetylation in the cell. MYST1 also acetylates p53 on lysine 120 and is important for activation of pro-apoptotic genes (1,2). As a component of the MSL complex, MYST1 associates with MSL1, MSL2L1, and MSL3L1, and specifically acetylates histone H4 on lysine 16 (3-5). As part of the NSL complex, MYST1 associates with the MLL1 histone methyltransferase complex containing MLL1/KMT2A, ASH2L, HCFC1, WDR5 and RBBP5, and shows broader acetyltransferase activity for histone H4 on lysines 5, 8, and 16 (3-5). MYST1 plays a critical role in the regulation of transcription, DNA repair, autophagy, apoptosis, and emybryonic stem cell pluripotency and differentiation (1,2,6). Loss of MYST1 leads to a global reduction in histone H4 lysine 16 acetylation, a common hallmark found in many human cancers. A reduction of MYST1 protein levels and histone H4 lysine 16 acetylation is associated with poor prognosis in breast, renal, colorectal, gastric, and ovarian cancers (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Tip60 is a member of the MYST (MOZ, YBF2, SAS2 and Tip60) family of histone acetyltransferases and plays a role in a variety of cellular processes such as transcriptional regulation, DNA repair, and apoptosis (1,2). Tip60 exists as part of a multi-subunit complex that includes proteins such as TRRAP, p400, Reptin, and Pontin (3,4). Tip60 plays important roles in double-stranded DNA break (DSB) repair. Tip60 is required for the activation of the ATM kinase in response to DSBs, as well as acetylation of histones H4 and H2A.X at DSBs to facilitate DNA repair (1,2,5-7). In addition, Tip60 dependent acetylation at Lys120 of p53 within the DNA binding domain is required for the induction of apoptosis upon DNA damage (8,9). Tip60 is involved in a number of transcriptional regulation pathways driven by factors such as nuclear receptors and β-catenin (10-13). The Tip60 complex has been shown to be important for mouse embryonic stem cell self-renewal by regulating transcription of developmental regulators that are controlled by Nanog (14). GSK3 (glycogen synthase kinase-3) mediated phosphorylation at Ser86 of Tip60 promotes Tip60 acetylation and subsequent stimulation of the required autophagy protein ULK1 (15).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: MYST2, also known as HBO1 and lysine acetyltransferase 7 (KAT7), is a member of the MYST (MOZ, YBF2, SAS2 and Tip60) family of histone acetyltransferases (HATs). MYST2 is the catalytic subunit of the HBO1 acetyltransferase complex, which consists of MYST2, MYST/ESA1-asociated factor 6 (MEAF6), inhibitor of growth protein 4 (ING4) or inhibitor of growth protein 5 (ING5), and one of two families of scaffold proteins (JADE-1/2/3 or BRPF1/2/3) (1,2). The substrate specificity of the HBO1 complex is determined by the associated scaffold protein. HBO1 complexes containing JADE scaffold proteins acetylate histone H4 on lysines 5, 8 and 12, while complexes containing BRPF scaffold proteins acetylate histone H3 on lysines 14 and 23 (2). In addition the scaffold protein appears to regulate the function of the HBO1 complex. Complexes containing JADE scaffold proteins bind to origin recognition complex 1 (ORC1) and regulate licensing of DNA replication, while HBO1 complexes containing BRPF scaffold proteins regulate transcription (2-5). MYST2 is required for regulation of cell proliferation (1), adipogenesis (6), embryonic development (7) and survival of fetal liver erythroblasts (8). In addition, MYST2 is over-expressed in several human cancers, including cancers of the testis, ovary, breast, stomach, esophagus, and bladder (9). The MYST2 gene is amplified and protein is over-expressed in breast cancers, and over-expression of MYST2 increases anchorage-independent growth of several breast cancer cell lines (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: CBP (CREB-binding protein) and p300 are highly conserved and functionally related transcriptional co-activators that associate with transcriptional regulators and signaling molecules, integrating multiple signal transduction pathways with the transcriptional machinery (1,2). CBP/p300 also contain histone acetyltransferase (HAT) activity, allowing them to acetylate histones and other proteins (2). Phosphorylation of p300 at Ser89 by PKC represses its transciptional acitivity, and phosphorylation at the same site by AMPK disrupts the association of p300 with nuclear receptors (3,4). Ser1834 phosphorylation of p300 by Akt disrupts its association with C/EBPβ (5). Growth factors induce phosphorylation of CBP at Ser437, which is required for CBP recruitment to the transcription complex (6). CaM kinase IV phosphorylates CBP at Ser302, which is required for CBP-dependent transcriptional activation in the CNS (7). The role of acetylation of CBP/p300 is of particular interest (2,8). Acetylation of p300 at Lys1499 has been demonstrated to enhance its HAT activity and affect a wide variety of signaling events (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: CBP (CREB-binding protein) and p300 are highly conserved and functionally related transcriptional co-activators that associate with transcriptional regulators and signaling molecules, integrating multiple signal transduction pathways with the transcriptional machinery (1,2). CBP/p300 also contain histone acetyltransferase (HAT) activity, allowing them to acetylate histones and other proteins (2). Phosphorylation of p300 at Ser89 by PKC represses its transciptional acitivity, and phosphorylation at the same site by AMPK disrupts the association of p300 with nuclear receptors (3,4). Ser1834 phosphorylation of p300 by Akt disrupts its association with C/EBPβ (5). Growth factors induce phosphorylation of CBP at Ser437, which is required for CBP recruitment to the transcription complex (6). CaM kinase IV phosphorylates CBP at Ser302, which is required for CBP-dependent transcriptional activation in the CNS (7). The role of acetylation of CBP/p300 is of particular interest (2,8). Acetylation of p300 at Lys1499 has been demonstrated to enhance its HAT activity and affect a wide variety of signaling events (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: CBP (CREB-binding protein) and p300 are highly conserved and functionally related transcriptional co-activators that associate with transcriptional regulators and signaling molecules, integrating multiple signal transduction pathways with the transcriptional machinery (1,2). CBP/p300 also contain histone acetyltransferase (HAT) activity, allowing them to acetylate histones and other proteins (2). Phosphorylation of p300 at Ser89 by PKC represses its transciptional acitivity, and phosphorylation at the same site by AMPK disrupts the association of p300 with nuclear receptors (3,4). Ser1834 phosphorylation of p300 by Akt disrupts its association with C/EBPβ (5). Growth factors induce phosphorylation of CBP at Ser437, which is required for CBP recruitment to the transcription complex (6). CaM kinase IV phosphorylates CBP at Ser302, which is required for CBP-dependent transcriptional activation in the CNS (7). The role of acetylation of CBP/p300 is of particular interest (2,8). Acetylation of p300 at Lys1499 has been demonstrated to enhance its HAT activity and affect a wide variety of signaling events (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Elongator is a highly conserved transcription elongation factor complex that was first identified in yeast as part of the hyperphosphorylated RNA polymerase II (RNAPII) holoenzyme (1). The Elongator complex consists of 6 subunits, ELP1-6, and has been shown to have acetyltransferase activity (2). The acetylation targets of Elongator include histone H3, which is linked to the transcription elongation function of the complex, and α-tubulin, which is associated with regulation of migration and maturation of projection neurons (3-6).

$108
250 PCR reactions
500 µl
SimpleChIP® Human EP300 Promoter Primers contain a mix of forward and reverse PCR primers that are specific to a region of the human EP300 promoter. These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitation (ChIP). Primers have been optimized for use in SYBR® Green quantitative real-time PCR and have been tested in conjunction with SimpleChIP® Enzymatic Chromatin IP Kits #9002 and #9003 and ChIP-validated antibodies from Cell Signaling Technology®. The EP300 gene encodes for p300, an acetyltransferase that, in combination with CBP, enhances transcriptional activation by acetylating various histones and other proteins.
REACTIVITY
Human

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to either identify multiple proteins associated with a specific region of the genome or to identify the many regions of the genome bound by a particular protein (3-6). ChIP can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors, and DNA repair proteins. When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. Fragmented chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or quantitative real-time PCR are often used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing (ChIP-Seq), or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8). SimpleChIP® primers have been optimized for amplification of ChIP-isolated DNA using real-time quantitative PCR and provide important positive and negative controls that can be used to confirm a successful ChIP experiment.

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: CBP (CREB-binding protein) and p300 are highly conserved and functionally related transcriptional co-activators that associate with transcriptional regulators and signaling molecules, integrating multiple signal transduction pathways with the transcriptional machinery (1,2). CBP/p300 also contain histone acetyltransferase (HAT) activity, allowing them to acetylate histones and other proteins (2). Phosphorylation of p300 at Ser89 by PKC represses its transciptional acitivity, and phosphorylation at the same site by AMPK disrupts the association of p300 with nuclear receptors (3,4). Ser1834 phosphorylation of p300 by Akt disrupts its association with C/EBPβ (5). Growth factors induce phosphorylation of CBP at Ser437, which is required for CBP recruitment to the transcription complex (6). CaM kinase IV phosphorylates CBP at Ser302, which is required for CBP-dependent transcriptional activation in the CNS (7). The role of acetylation of CBP/p300 is of particular interest (2,8). Acetylation of p300 at Lys1499 has been demonstrated to enhance its HAT activity and affect a wide variety of signaling events (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Immunoprecipitation, Western Blotting

Background: CBP (CREB-binding protein) and p300 are highly conserved and functionally related transcriptional co-activators that associate with transcriptional regulators and signaling molecules, integrating multiple signal transduction pathways with the transcriptional machinery (1,2). CBP/p300 also contain histone acetyltransferase (HAT) activity, allowing them to acetylate histones and other proteins (2). Phosphorylation of p300 at Ser89 by PKC represses its transciptional acitivity, and phosphorylation at the same site by AMPK disrupts the association of p300 with nuclear receptors (3,4). Ser1834 phosphorylation of p300 by Akt disrupts its association with C/EBPβ (5). Growth factors induce phosphorylation of CBP at Ser437, which is required for CBP recruitment to the transcription complex (6). CaM kinase IV phosphorylates CBP at Ser302, which is required for CBP-dependent transcriptional activation in the CNS (7). The role of acetylation of CBP/p300 is of particular interest (2,8). Acetylation of p300 at Lys1499 has been demonstrated to enhance its HAT activity and affect a wide variety of signaling events (9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Chromatin IP, Chromatin IP-seq, Western Blotting

Background: The Set1 histone methyltransferase protein was first identified in yeast as part of the Set1/COMPASS histone methyltransferase complex, which methylates histone H3 at Lys4 and functions as a transcriptional co-activator (1). While yeast contain only one known Set1 protein, six Set1-related proteins exist in mammals: SET1A, SET1B, MLL1, MLL2, MLL3, and MLL4, all of which assemble into COMPASS-like complexes and methylate histone H3 at Lys4 (2,3). These Set1-related proteins are each found in distinct protein complexes, all of which share the common subunits WDR5, RBBP5, ASH2L, CXXC1 and DPY30. These subunits are required for proper complex assembly and modulation of histone methyltransferase activity (2-6). MLL1 and MLL2 complexes contain the additional protein subunit, menin (6). Like yeast Set1, all six Set1-related mammalian proteins methylate histone H3 at Lys4 (2-6). MLL translocations are found in a large number of hematological malignancies, suggesting that Set1/COMPASS histone methyltransferase complexes play a critical role in leukemogenesis (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The Set1 histone methyltransferase protein was first identified in yeast as part of the Set1/COMPASS histone methyltransferase complex, which methylates histone H3 at Lys4 and functions as a transcriptional co-activator (1). While yeast contain only one known Set1 protein, six Set1-related proteins exist in mammals: SET1A, SET1B, MLL1, MLL2, MLL3, and MLL4, all of which assemble into COMPASS-like complexes and methylate histone H3 at Lys4 (2,3). These Set1-related proteins are each found in distinct protein complexes, all of which share the common subunits WDR5, RBBP5, ASH2L, CXXC1 and DPY30. These subunits are required for proper complex assembly and modulation of histone methyltransferase activity (2-6). MLL1 and MLL2 complexes contain the additional protein subunit, menin (6). Like yeast Set1, all six Set1-related mammalian proteins methylate histone H3 at Lys4 (2-6). MLL translocations are found in a large number of hematological malignancies, suggesting that Set1/COMPASS histone methyltransferase complexes play a critical role in leukemogenesis (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: O-GlcNAcylation is a post-translational modification where β-D-N-acetylglucosamine (GlcNAc) is covalently linked to cytoplasmic and nuclear proteins at serine or threonine residues (1,2). This modification is important in many cellular processes including metabolism, cell growth and morphogenesis, apoptosis, and transcription (2,3), and research studies have implicated this modification in cancer (1). The reversible protein modification by O-GlcNAc, which has been suggested to be a nutrient and stress sensor, is catalyzed by two highly conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) (4).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated OGT (D1D8Q) Rabbit mAb #24083.
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: O-GlcNAcylation is a post-translational modification where β-D-N-acetylglucosamine (GlcNAc) is covalently linked to cytoplasmic and nuclear proteins at serine or threonine residues (1,2). This modification is important in many cellular processes including metabolism, cell growth and morphogenesis, apoptosis, and transcription (2,3), and research studies have implicated this modification in cancer (1). The reversible protein modification by O-GlcNAc, which has been suggested to be a nutrient and stress sensor, is catalyzed by two highly conserved enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA) (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Host cell factor C1 (HCFC1) was first identified as the host cell factor for human herpes simplex virus infection. HCFC1 and the viral protein VP16 belong to a multi-protein complex that promotes transcription of viral immediate early genes (1). The relatively large HCFC1 protein contains 6 centrally located 26 amino acid repeats that can be O-GlcNAcylated and subjected to O-linked beta-N-acetylglucosamine transferase (OGT) cleavage (2-4). The resulting amino-terminal (HCFC1-N) and carboxy-terminal (HCFC1-C) fragments are non-covalently associated and play important roles in cell cycle regulation. The HCFC1-N peptide facilitates progression through the G1 phase of the cell cycle while HCFC1-C enables proper mitosis and cytokinesis during the M phase (5-7). As HCFC1 plays an important role in neurodevelopment, mutations in the corresponding gene are associated with neurodevelopmental disorders (e.g., intellectual disability) in humans (8).

$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: PHD finger protein 20 (PHF20) is a putative transcription factor protein. PHF20 contains a tudor domain, which facilitates binding to di-methylated histone H4 Lys20 (1). PHF20 may contribute to the development of cancers, including glioblastoma, lung cancer, colon cancer and ovarian cancer (2-5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Host cell factor C1 (HCFC1) was first identified as the host cell factor for human herpes simplex virus infection. HCFC1 and the viral protein VP16 belong to a multi-protein complex that promotes transcription of viral immediate early genes (1). The relatively large HCFC1 protein contains 6 centrally located 26 amino acid repeats that can be O-GlcNAcylated and subjected to O-linked beta-N-acetylglucosamine transferase (OGT) cleavage (2-4). The resulting amino-terminal (HCFC1-N) and carboxy-terminal (HCFC1-C) fragments are non-covalently associated and play important roles in cell cycle regulation. The HCFC1-N peptide facilitates progression through the G1 phase of the cell cycle while HCFC1-C enables proper mitosis and cytokinesis during the M phase (5-7). As HCFC1 plays an important role in neurodevelopment, mutations in the corresponding gene are associated with neurodevelopmental disorders (e.g., intellectual disability) in humans (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Transformation/transcription domain-associated protein (TRRAP) is a highly conserved 434 kDa protein found in various multiprotein complexes, such as SAGA, PCAF, NuA4 and TIP60, which contain histone acetyltransferase (HAT) activity (1-4). TRRAP functions as an adaptor protein by binding directly to the transactivation domains of transcriptional activator proteins and facilitating the recruitment of HAT complexes to acetylate histone proteins and activate transcription (1-5). TRRAP is required for the transcriptional activation and cell transformation activities of c-Myc, E2F1, E2F4, p53 and the adenovirus E1A proteins (1,6,7). TRRAP is also essential in early development and is required at the mitotic checkpoint and for normal cell cycle progression (8,9). In addition, TRRAP has been shown to function in DNA repair. As part of the TIP60 complex, TRRAP is required for the acetylation of histone H4 at double-stranded DNA breaks and subsequent DNA repair by homologous recombination (10). In addition, TRRAP associates with the MRN (MRE11, RAD50, NBS1) complex, which lacks intrinsic HAT activity yet functions in the sensing and subsequent repair of double-stranded breaks by non-homologous DNA end-joining (11). TRRAP shows significant homology to the PI-3 kinase domain of the ATM family of kinases; however, amino acids that map to the catalytic site of the kinase domain are not conserved in TRRAP (1).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Western Blotting

Background: Transformation/transcription domain-associated protein (TRRAP) is a highly conserved 434 kDa protein found in various multiprotein complexes, such as SAGA, PCAF, NuA4 and TIP60, which contain histone acetyltransferase (HAT) activity (1-4). TRRAP functions as an adaptor protein by binding directly to the transactivation domains of transcriptional activator proteins and facilitating the recruitment of HAT complexes to acetylate histone proteins and activate transcription (1-5). TRRAP is required for the transcriptional activation and cell transformation activities of c-Myc, E2F1, E2F4, p53 and the adenovirus E1A proteins (1,6,7). TRRAP is also essential in early development and is required at the mitotic checkpoint and for normal cell cycle progression (8,9). In addition, TRRAP has been shown to function in DNA repair. As part of the TIP60 complex, TRRAP is required for the acetylation of histone H4 at double-stranded DNA breaks and subsequent DNA repair by homologous recombination (10). In addition, TRRAP associates with the MRN (MRE11, RAD50, NBS1) complex, which lacks intrinsic HAT activity yet functions in the sensing and subsequent repair of double-stranded breaks by non-homologous DNA end-joining (11). TRRAP shows significant homology to the PI-3 kinase domain of the ATM family of kinases; however, amino acids that map to the catalytic site of the kinase domain are not conserved in TRRAP (1).