20% off purchase of 3 or more products* | Learn More >>

Human Iron-Sulfur Cluster Binding

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Elongator is a highly conserved transcription elongation factor complex that was first identified in yeast as part of the hyperphosphorylated RNA polymerase II (RNAPII) holoenzyme (1). The Elongator complex consists of 6 subunits, ELP1-6, and has been shown to have acetyltransferase activity (2). The acetylation targets of Elongator include histone H3, which is linked to the transcription elongation function of the complex, and α-tubulin, which is associated with regulation of migration and maturation of projection neurons (3-6).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Ribosomal protein S3 (rpS3) is a component of the 40S ribosomal subunit and is involved in translation. HSP90 interacts with both the amino-terminus and carboxy-terminus of rpS3, preventing its ubiquitination and degradation and thereby retaining the integrity of the ribosome (1). rpS3 has also been shown to function as an endonuclease during DNA damage repair (2,3). Furthermore, overexpression of rpS3 sensitizes lymphocytic cells to cytokine-induced apoptosis, indicating a third role for rpS3 during apoptosis (4). The functions of rpS3 during DNA damage repair and apoptosis have been mapped to two distinct domains (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Ribosomal protein S3 (rpS3) is a component of the 40S ribosomal subunit and is involved in translation. HSP90 interacts with both the amino-terminus and carboxy-terminus of rpS3, preventing its ubiquitination and degradation and thereby retaining the integrity of the ribosome (1). rpS3 has also been shown to function as an endonuclease during DNA damage repair (2,3). Furthermore, overexpression of rpS3 sensitizes lymphocytic cells to cytokine-induced apoptosis, indicating a third role for rpS3 during apoptosis (4). The functions of rpS3 during DNA damage repair and apoptosis have been mapped to two distinct domains (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: CDGSH iron-sulfur domain-containing protein 1 (CISD1), also known as mitochondrial outer membrane iron-sulfur (2Fe-2S) protein (mitoNEET) was first identified as the target for the drug pioglitazone, used to treat diabetes (1-3). CISD1/mitoNEET regulates both mitochondrial iron transport into the matrix and mitochondrial respiratory capacity. It has also been shown to affect the dynamics of cellular and whole-body lipid homeostasis (2,4). Furthermore, research studies have shown that CISD1/mitoNEET is overexpressed in human epithelial breast cancer cells and it has been considered a potential chemotherapeutic target (6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Nutrient-deprivation autophagy factor-1 (NAF-1) (also known as CISD2, CDGSH iron-sulfur domain-containing protein 2) is a member of NEET family of 2Fe-2S proteins, characterized by a unique CDGSH sequence at their Fe-S-cluster-binding domain (1). NAF-1/CISD2 is a multifunctional protein. In addition to its role in iron and ROS homeostasis, it has been shown to play a role in autophagy, neurodegenerative diseases, and aging (2-7). Enhanced expression of NAF-1/CISD2 is associated with many types of cancer. Silencing of NAF-1/CISD2 expression in cancer cells significantly inhibited proliferation and tumorigenicity; while overexpression of NAF-1/CISD2 significantly enhanced proliferation (2, 8, 9).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Immunoprecipitation, Western Blotting

Background: Aconitase 2 (ACO2) catalyzes the conversion of citrate to isocitrate via cis-aconitate in the second step of the tricarboxylic acid (TCA) cycle (1,2). ACO2 is also an important regulator of iron homeostasis within cells (1-4). In addition, research studies have shown that this enzyme is deficient in the mitochondrial disease Friedreich's Ataxia (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Aconitase 2 (ACO2) catalyzes the conversion of citrate to isocitrate via cis-aconitate in the second step of the tricarboxylic acid (TCA) cycle (1,2). ACO2 is also an important regulator of iron homeostasis within cells (1-4). In addition, research studies have shown that this enzyme is deficient in the mitochondrial disease Friedreich's Ataxia (4,5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Iron regulatory proteins (IRPs; also known as IREBs) are RNA-binding proteins that recognize iron-responsive elements (IREs) and play an important role in maintaining iron homeostasis in mammalian cells. IREs are conserved cis-regulatory hairpin structures located within the 5’ or 3’ untranslated regions (UTRs) of target mRNAs. IRPs inhibit translation when bound to IREs within the 5’ UTR of mRNA encoding for proteins involved in iron storage, export, and utilization. IRP binding to multiple IREs within the 3’ UTR of transferin receptor 1 (TFR1) mRNA prevents its degradation, thereby augmenting translation of TFR1 and increasing iron uptake into cells (1-3). Dysregulation of IRPs has been associated with human cancers (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Iron regulatory proteins (IRPs; also known as IREBs) are RNA-binding proteins that recognize iron-responsive elements (IREs) and play an important role in maintaining iron homeostasis in mammalian cells. IREs are conserved cis-regulatory hairpin structures located within the 5’ or 3’ untranslated regions (UTRs) of target mRNAs. IRPs inhibit translation when bound to IREs within the 5’ UTR of mRNA encoding for proteins involved in iron storage, export, and utilization. IRP binding to multiple IREs within the 3’ UTR of transferin receptor 1 (TFR1) mRNA prevents its degradation, thereby augmenting translation of TFR1 and increasing iron uptake into cells (1-3). Dysregulation of IRPs has been associated with human cancers (4-6).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: BACH1, also known as BRIP1 and FANCJ, is a DNA helicase involved in repair of DNA cross-links and double strand breaks (1-3). Interaction between phosphorylated BACH1 and BRCA1 is required for DNA damage-induced checkpoint signaling (3,4). Originally identified as a breast cancer susceptibility gene (1), the BACH1 gene is mutated in Fanconi anemia (5), a recessive disorder characterized by multiple congenital abnormalities, progressive bone marrow failure, and high cancer risk/predisposition. Research investigators have concluded that BACH1 interactions with BRCA1 and the presence of BACH1 mutations in patients with early onset breast cancer indicate that BACH1 may act as a tumor suppressor (6).Phosphorylation of BACH1 at Thr1133 is thought to be involved in regulation of the replication checkpoint and is required for the interaction of BACH1 with TopBP1 (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Dihydropyrimidine dehydrogenase (DPD, DPYD) catalyzes the initial and rate-limiting step in uracil and thymidine catabolism as well as catabolism of the chemotherapeutic drug 5-fluorouracil (5-FU) and its derivatives. DPYD deficiency, which results from mutations in the DPYD gene, causes errors in pyrimidine metabolism and potentially life-threatening side effects in cancer patients treated with 5-FU (reviewed in 1). As a result, ongoing work examines whether or how DPYD gene variation and protein expression can be used to predict 5-FU toxicity (1,2). Several genes that impart resistance to 5-FU were recently identified in human hepatocellular carcinoma (HCC). AEG-1, which is highly expressed in HCC, increases the expression of DPYD. DPYD is expressed more highly in HCC than in normal liver, and this is thought to be one mechanism of 5-FU resistance (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Hamster, Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Initiation of eukaryotic DNA replication is a stringently regulated process that requires the cooperation of many proteins and protein complexes to occur efficiently, at the origins of replication, and once per cell cycle. The initiation of DNA replication requires a protein complex composed of two DNA polymerase α subunits and a pair of primase subunits. Primase activity catalyzes de novo synthesis of an RNA/DNA primer (initiator DNA) on the leading and lagging strands, while polymerase activity extends the initiator DNA (1). The 48 and 58 kDa primase subunits cooperate in the synthesis of small RNA primers. p48 is the catalytically active subunit (2), while p58 couples p48 to the polymerase to allow the transfer of primers to the active site. The p58 subunit may also play a role in regulation of primer length (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Base excision repair (BER) proteins catalyze the removal of incorrect or damaged bases, including oxidized bases, from DNA. N-glycosylases specific to a given lesion remove the incorrect base as the first step in BER. MYH is the mammalian ortholog of E. coli MutY, a DNA glycosylase that catalyzes the removal of 8-oxoG:A mismatches (1). Several MYH isoforms have been detected in human cells localizing to either the nucleus or the mitochondria (2). MYH interacts with DNA repair proteins and localizes to DNA damage foci after oxidative damage (3). Research studies have shown that mutations in the corresponding MYH gene are associated with human gastric (4) and colorectal (5-7) cancers.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Base excision repair (BER) proteins catalyze the removal of incorrect or damaged bases, including oxidized bases, from DNA. N-glycosylases specific to a given lesion remove the incorrect base as the first step in BER. MYH is the mammalian ortholog of E. coli MutY, a DNA glycosylase that catalyzes the removal of 8-oxoG:A mismatches (1). Several MYH isoforms have been detected in human cells localizing to either the nucleus or the mitochondria (2). MYH interacts with DNA repair proteins and localizes to DNA damage foci after oxidative damage (3). Research studies have shown that mutations in the corresponding MYH gene are associated with human gastric (4) and colorectal (5-7) cancers.

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: The antiviral protein viperin (RSAD2) is induced by viral infection, lipopolysaccharides (LPS), polyriboinosinic polyribocytidylic acid [poly(I:C)], and interferons (1,2). Viperin protein localizes to the ER and redistributes to the Golgi and then to lipid droplets following viral infection (1,3). Viruses are known to use lipid droplets for replication, and the localization of the antiviral viperin protein to these lipid droplets is likely part of a cellular mechanism to inhibit these pathogens (4). Research studies indicate that induction of viperin by HIV in human macrophages inhibits virus production, and that siRNA targeting viperin reduced the inhibition of HIV replication observed in poly(I:C) treated astrocytes (5,6). Additional research suggests that human cytomegalovirus (HCMV) co-opts viperin protein function, resulting in an interaction between viperin and the viral protein vMIA. This association leads to relocalization of viperin to mitochondria, resulting in disruption of ATP generation and the actin cytoskeleton, and increased viral infection (7). The viperin protein also contributes to innate immune signaling by recruiting IRAK1 ant TRAF6 to lipid droplets, which results in activation of IRF7 and induction of type I interferon (8).

$303
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunoprecipitation, Western Blotting

Background: BACH1, also known as BRIP1 and FANCJ, is a DNA helicase involved in repair of DNA cross-links and double strand breaks (1-3). Interaction between phosphorylated BACH1 and BRCA1 is required for DNA damage-induced checkpoint signaling (3,4). Originally identified as a breast cancer susceptibility gene (1), the BACH1 gene is mutated in Fanconi anemia (5), a recessive disorder characterized by multiple congenital abnormalities, progressive bone marrow failure, and high cancer risk/predisposition. Research investigators have concluded that BACH1 interactions with BRCA1 and the presence of BACH1 mutations in patients with early onset breast cancer indicate that BACH1 may act as a tumor suppressor (6).Phosphorylation of BACH1 at Thr1133 is thought to be involved in regulation of the replication checkpoint and is required for the interaction of BACH1 with TopBP1 (7).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: XPB and XPD are ATPase/helicase subunits of the TFIIH complex that are involved in nucleotide excision repair (NER) to remove lesions and photoproducts generated by UV light (1). XPB and XPD are 3’-5’ and 5’-3’ DNA helicases, respectively, that play a role in opening of the DNA damage site to facilitate repair (2,3). XPB and XPD both play an important role in maintaining genomic stability, and researchers have linked mutations of these proteins to Xeroderma Pigmentosum (XP) and Trichothiodystrophy (TTD). XP patients have abnormalities in skin pigmentation and are highly susceptible to skin cancers, while TTD patients exhibit symptoms such as brittle hair, neurological abnormalities, and mild photosensitivity (4). In addition to their role in NER, XPB and XPD are involved in transcription initiation as part of the TFIIH core complex (5). The helicase activity of XPB unwinds DNA around the transcription start site to facilitate RNA polymerase II promoter clearance and initiation of transcription (6). XPD plays a structural role linking core TFIIH components with the cdk-activating kinase (CAK) complex that phosphorylates the C-terminus of the largest subunit of RNA polymerase II, leading to transcription initiation (7).