20% off purchase of 3 or more products* | Learn More >>

Human Misfolded Protein Binding

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: HDAC6 is a class II histone deacetylase enzyme localized to the cytoplasm and associated with the microtubule network (1). It is involved in the regulation of many cellular processes, including cell migration, immune synapse formation, viral infection, and degradation of misfolded proteins (1). HDAC6 contains two tandem catalytic domains that facilitate the deacetylation of multiple protein substrates, including histones and non-histone proteins such as tubulin, cortactin, and HSP90. Despite the ability to deacetylate histone proteins in vitro, there is no evidence for HDAC6-mediated deacetylation of histones in vivo (2,3). The acetylation/deacetylation of tubulin on Lys40 regulates binding and motility of the kinesin-1 motor protein and subsequent transport of cargo proteins such as JNK-interacting protein 1 (JIP1) (4). The acetylation/deacetylation of cortactin regulates cell motility by modulating the binding of cortactin to F-actin (5). Acetylation/deacetylation of HSP90 modulates chaperone complex activity by regulating the binding of an essential cochaperone protein, p23 (6,7). In addition to its role as a protein deacetylase, HDAC6 functions as a component of the aggresome, a proteinaceous inclusion body that forms in response to an accumulation of misfolded or partially denatured proteins (8). Formation of the aggresome is a protective response that sequesters cytotoxic protein aggregates for eventual autophagic clearance from the cell. HDAC6 contains a zinc finger ubiquitin-binding domain that binds both mono- and poly-ubiquitinated proteins (8). HDAC6 binds to both poly-ubiquitinated misfolded proteins and dynein motors, facilitating the transport of misfolded proteins to the aggresome (9,10). HDAC6 is also required for subsequent recruitment of the autophagic machinery and clearance of aggresomes from the cell (11). Thus, HDAC6 plays a key role in the protection against the deleterious effects of pathological protein aggregation that occurs in various diseases, such as neurodegenerative Huntington’s disease (11).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometric analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated HDAC6 (D2E5) Rabbit mAb #7558.
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Flow Cytometry

Background: HDAC6 is a class II histone deacetylase enzyme localized to the cytoplasm and associated with the microtubule network (1). It is involved in the regulation of many cellular processes, including cell migration, immune synapse formation, viral infection, and degradation of misfolded proteins (1). HDAC6 contains two tandem catalytic domains that facilitate the deacetylation of multiple protein substrates, including histones and non-histone proteins such as tubulin, cortactin, and HSP90. Despite the ability to deacetylate histone proteins in vitro, there is no evidence for HDAC6-mediated deacetylation of histones in vivo (2,3). The acetylation/deacetylation of tubulin on Lys40 regulates binding and motility of the kinesin-1 motor protein and subsequent transport of cargo proteins such as JNK-interacting protein 1 (JIP1) (4). The acetylation/deacetylation of cortactin regulates cell motility by modulating the binding of cortactin to F-actin (5). Acetylation/deacetylation of HSP90 modulates chaperone complex activity by regulating the binding of an essential cochaperone protein, p23 (6,7). In addition to its role as a protein deacetylase, HDAC6 functions as a component of the aggresome, a proteinaceous inclusion body that forms in response to an accumulation of misfolded or partially denatured proteins (8). Formation of the aggresome is a protective response that sequesters cytotoxic protein aggregates for eventual autophagic clearance from the cell. HDAC6 contains a zinc finger ubiquitin-binding domain that binds both mono- and poly-ubiquitinated proteins (8). HDAC6 binds to both poly-ubiquitinated misfolded proteins and dynein motors, facilitating the transport of misfolded proteins to the aggresome (9,10). HDAC6 is also required for subsequent recruitment of the autophagic machinery and clearance of aggresomes from the cell (11). Thus, HDAC6 plays a key role in the protection against the deleterious effects of pathological protein aggregation that occurs in various diseases, such as neurodegenerative Huntington’s disease (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: HDAC6 is a class II histone deacetylase enzyme localized to the cytoplasm and associated with the microtubule network (1). It is involved in the regulation of many cellular processes, including cell migration, immune synapse formation, viral infection, and degradation of misfolded proteins (1). HDAC6 contains two tandem catalytic domains that facilitate the deacetylation of multiple protein substrates, including histones and non-histone proteins such as tubulin, cortactin, and HSP90. Despite the ability to deacetylate histone proteins in vitro, there is no evidence for HDAC6-mediated deacetylation of histones in vivo (2,3). The acetylation/deacetylation of tubulin on Lys40 regulates binding and motility of the kinesin-1 motor protein and subsequent transport of cargo proteins such as JNK-interacting protein 1 (JIP1) (4). The acetylation/deacetylation of cortactin regulates cell motility by modulating the binding of cortactin to F-actin (5). Acetylation/deacetylation of HSP90 modulates chaperone complex activity by regulating the binding of an essential cochaperone protein, p23 (6,7). In addition to its role as a protein deacetylase, HDAC6 functions as a component of the aggresome, a proteinaceous inclusion body that forms in response to an accumulation of misfolded or partially denatured proteins (8). Formation of the aggresome is a protective response that sequesters cytotoxic protein aggregates for eventual autophagic clearance from the cell. HDAC6 contains a zinc finger ubiquitin-binding domain that binds both mono- and poly-ubiquitinated proteins (8). HDAC6 binds to both poly-ubiquitinated misfolded proteins and dynein motors, facilitating the transport of misfolded proteins to the aggresome (9,10). HDAC6 is also required for subsequent recruitment of the autophagic machinery and clearance of aggresomes from the cell (11). Thus, HDAC6 plays a key role in the protection against the deleterious effects of pathological protein aggregation that occurs in various diseases, such as neurodegenerative Huntington’s disease (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Clusterin (CLU, apolipoprotein J) is a multifunctional glycoprotein that is expressed ubiquitously in most tissues. Clusterin functions as a secreted chaperone protein that interacts with and stabilizes stress-induced proteins to prevent their precipitation (1,2). Research studies show that clusterin plays a protective role in Alzheimer’s disease by sequestering amyloid β(1-40) peptides to form long-lived, stable complexes, which prevents amyloid fibril formation (3-5).In addition to the secreted protein, several intracellular isoforms are localized to the nucleus, mitochondria, cytoplasm, and ER. The subcellular distribution of these multiple isoforms leads to the diversity of clusterin functions. Additional studies report that clusterin is involved in membrane recycling, cell adhesion, cell proliferation, apoptosis, and tumor survival (6-9). The clusterin precursor is post-translationally cleaved into the mature clusterin α and clusterin β forms. Clusterin α and β chains create a heterodimer through formation of disulfide bonds (10).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The carboxy terminus of Hsc70-interacting protein (CHIP, STUB1) is a co-chaperone protein and functional E3 ubiquitin ligase that links the polypeptide binding activity of Hsp70 to the ubiquitin proteasome system (1). Cytoplasmic CHIP protein contains three 34-amino acid TPR (tetratricopeptide repeat) domains at its amino terminus and a carboxy-terminal U-box domain. CHIP interacts with the molecular chaperones Hsc70-Hsp70 and Hsp90 through its TPR domain, while E3 ubiquitin ligase activity is confined to the U-box domain (2,3). The binding of CHIP to Hsp70 can stall the folding of Hsp70 client proteins and concomitantly facilitate the U-box dependent ubiquitination of Hsp70-bound substrates (4-6). CHIP appears to play a central role in cell stress protection (7) and is responsible for the degradation of disease-related proteins that include cystic fibrosis transmembrane conductance regulator (4), p53 (8), huntingtin and Ataxin-3 (9), Tau protein (10), and α-synuclein (11).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: In both prokaryotic and eukaryotic cells the misfolding and aggregation of proteins during biogenesis and under conditions of cellular stress are prevented by molecular chaperones (1-3). HSP60 has primarily been known as a mitochondrial protein that is important for folding key proteins after import into the mitochondria (4). Research studies have shown that a significant amount of HSP60 is also present in the cytosol of many cells, and that it is induced by stress, inflammatory and immune responses, and autoantibodies correlated with Alzheimer's, coronary artery diseases, MS, and diabetes (5-8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Bovine, Hamster, Human, Monkey, Mouse, Pig, Rat, Xenopus, Zebrafish

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: In both prokaryotic and eukaryotic cells the misfolding and aggregation of proteins during biogenesis and under conditions of cellular stress are prevented by molecular chaperones (1-3). HSP60 has primarily been known as a mitochondrial protein that is important for folding key proteins after import into the mitochondria (4). Research studies have shown that a significant amount of HSP60 is also present in the cytosol of many cells, and that it is induced by stress, inflammatory and immune responses, and autoantibodies correlated with Alzheimer's, coronary artery diseases, MS, and diabetes (5-8).

$348
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated HSP60 (D6F1) XP® Rabbit mAb #12165.
APPLICATIONS
REACTIVITY
Bovine, Hamster, Human, Monkey, Mouse, Pig, Rat, Xenopus, Zebrafish

Application Methods: Flow Cytometry

Background: In both prokaryotic and eukaryotic cells the misfolding and aggregation of proteins during biogenesis and under conditions of cellular stress are prevented by molecular chaperones (1-3). HSP60 has primarily been known as a mitochondrial protein that is important for folding key proteins after import into the mitochondria (4). Research studies have shown that a significant amount of HSP60 is also present in the cytosol of many cells, and that it is induced by stress, inflammatory and immune responses, and autoantibodies correlated with Alzheimer's, coronary artery diseases, MS, and diabetes (5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
D. melanogaster, Human, Monkey, Mouse, Rat

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Western Blotting

Background: In both prokaryotic and eukaryotic cells the misfolding and aggregation of proteins during biogenesis and under conditions of cellular stress are prevented by molecular chaperones (1-3). HSP60 has primarily been known as a mitochondrial protein that is important for folding key proteins after import into the mitochondria (4). Research studies have shown that a significant amount of HSP60 is also present in the cytosol of many cells, and that it is induced by stress, inflammatory and immune responses, and autoantibodies correlated with Alzheimer's, coronary artery diseases, MS, and diabetes (5-8).

$122
20 µl
$293
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: Clusterin (CLU, apolipoprotein J) is a multifunctional glycoprotein that is expressed ubiquitously in most tissues. Clusterin functions as a secreted chaperone protein that interacts with and stabilizes stress-induced proteins to prevent their precipitation (1,2). Research studies show that clusterin plays a protective role in Alzheimer’s disease by sequestering amyloid β(1-40) peptides to form long-lived, stable complexes, which prevents amyloid fibril formation (3-5).In addition to the secreted protein, several intracellular isoforms are localized to the nucleus, mitochondria, cytoplasm, and ER. The subcellular distribution of these multiple isoforms leads to the diversity of clusterin functions. Additional studies report that clusterin is involved in membrane recycling, cell adhesion, cell proliferation, apoptosis, and tumor survival (6-9). The clusterin precursor is post-translationally cleaved into the mature clusterin α and clusterin β forms. Clusterin α and β chains create a heterodimer through formation of disulfide bonds (10).

$348
100 µl
This Cell Signaling Technology antibody is conjugated to the carbohydrate groups of horseradish peroxidase (HRP) via its amine groups. The HRP conjugated antibody is expected to exhibit the same species cross-reactivity as the unconjugated HSP60 (D6F1) XP® Rabbit mAb #12165.
APPLICATIONS
REACTIVITY
Bovine, Hamster, Human, Monkey, Mouse, Pig, Rat, Xenopus, Zebrafish

Application Methods: Western Blotting

Background: In both prokaryotic and eukaryotic cells the misfolding and aggregation of proteins during biogenesis and under conditions of cellular stress are prevented by molecular chaperones (1-3). HSP60 has primarily been known as a mitochondrial protein that is important for folding key proteins after import into the mitochondria (4). Research studies have shown that a significant amount of HSP60 is also present in the cytosol of many cells, and that it is induced by stress, inflammatory and immune responses, and autoantibodies correlated with Alzheimer's, coronary artery diseases, MS, and diabetes (5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: p58IPK is an inhibitor of interferon-induced and double-stranded RNA-activated protein kinase (PKR). It physically interacts with PKR and inhibits its activation and activity (1). Influenza virus activates p58IPK and thus blocks the activity of PKR to repress translation in the infected cells. In the uninfected cells, p58IPK forms a complex with its own inhibitor, HSP40, and is kept in an inactive state (2). ER stress induces the expression of p58IPK mediated by ATF6 (3,4). The induced p58IPK negatively regulates Perk activity, inhibits eIF2α phosphorylation and suppresses the activation of expression of downstream ER-responsive genes ATF4 and GADD153 (4). More recently, p58IPK has been shown to associate with the lumen of the endoplasmic reticulum (ER) where it is believed to serve as a cochaperone for BiP (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The neurological condition Dystonia is associated with sustained muscle contractions and abnormal posturing (1). TorsinA, torsinB, torp2A and torp3A belong to the family of ATPases associated with cellular activites (AAA+) and mutations in torsinA cause early onset dystonia (2). TorsinA has been shown to suppress intracellular protein aggregation in C. elegans and possesses chaperon activity. Interestingly, torsinA is highly expressed in dopaminergic neurons and associates with alpha-synuclein in Lewy bodies, which pathologically characterize Parkinson's Disease (3-5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Pig, Rat

Application Methods: Western Blotting

Background: BAG6 (BCL2-associated athanogene-6), alternately known as BAT3 (HLA-B-associated transcript 3), was originally identified as a gene within the class III region of the human major histocompatibility complex, but has subsequently been found to exhibit protein chaperone activity. BAG6, in conjunction with other chaperone proteins and ubiquitin ligases, regulates protein stability and insertion of tail-anchored membrane proteins into the endoplasmic reticulum (1-3). The BAT3 complex, consisting of BAG6, TRC35 and Ubl4a localizes to ribosomes synthesizing membrane proteins and facilitates tailed-anchored protein capture by TRC40 and subsequent insertion of the nascent protein in to the ER membrane (4,5). BAG6 also plays a critical role in clearing cells of mis-folded and mis-localized peptides via endoplasmic reticulum-associated degradation and the ubiquitin-proteasome system (1,6,7). BAG6 may also act as a chaperone for glycoproteins through its interaction with DERLIN2 (8).In addition to its role as a chaperone, BAG6 has also been implicated in regulating chromatin structure and gene expression. For example, BAG6 and SET1A act as binding partners for BORIS to effect changes of chromatin structure and gene expression (9). Similarly, increased expression of BAG6 induces p300-mediated acetylation of p53, which is required for DNA damage response (10). BAG6 has also been found to interact with TGF-β, and in so doing acts as a positive regulator of TGF-β1 stimulation of type 1 collagen expression (11). BAG6 also suppresses bone morphogenic protein (BMP) signaling via its interaction with and regulation of small C-terminal domain phosphatase (SCP) that dephosphorylates SMAD proteins resulting in subsequent termination of BMP-mediated events (12).

$108
250 PCR reactions
500 µl
SimpleChIP® Human DNAJB9 Exon 1 Primers contain a mix of forward and reverse PCR primers that are specific to exon 1 of the human DnaJ homolog subfamily B member 9 gene. These primers can be used to amplify DNA that has been isolated using chromatin immunoprecipitations (ChIP). Primers have been optimized for use with SimpleChIP® Universal qPCR Master Mix #88989 and have been tested in conjunction with SimpleChIP® Plus Enzymatic Chromatin IP Kits #9004 and #9005 and ChIP-validated antibodies from Cell Signaling Technology®.
REACTIVITY
Human

Background: The chromatin immunoprecipitation (ChIP) assay is a powerful and versatile technique used for probing protein-DNA interactions within the natural chromatin context of the cell (1,2). This assay can be used to either identify multiple proteins associated with a specific region of the genome or to identify the many regions of the genome bound by a particular protein (3-6). ChIP can be used to determine the specific order of recruitment of various proteins to a gene promoter or to "measure" the relative amount of a particular histone modification across an entire gene locus (3,4). In addition to histone proteins, the ChIP assay can be used to analyze binding of transcription factors and co-factors, DNA replication factors, and DNA repair proteins. When performing the ChIP assay, cells are first fixed with formaldehyde, a reversible protein-DNA cross-linking agent that "preserves" the protein-DNA interactions occurring in the cell (1,2). Cells are lysed and chromatin is harvested and fragmented using either sonication or enzymatic digestion. Fragmented chromatin is then immunoprecipitated with antibodies specific to a particular protein or histone modification. Any DNA sequences that are associated with the protein or histone modification of interest will co-precipitate as part of the cross-linked chromatin complex and the relative amount of that DNA sequence will be enriched by the immunoselection process. After immunoprecipitation, the protein-DNA cross-links are reversed and the DNA is purified. Standard PCR or quantitative real-time PCR are often used to measure the amount of enrichment of a particular DNA sequence by a protein-specific immunoprecipitation (1,2). Alternatively, the ChIP assay can be combined with genomic tiling micro-array (ChIP on chip) techniques, high throughput sequencing (ChIP-Seq), or cloning strategies, all of which allow for genome-wide analysis of protein-DNA interactions and histone modifications (5-8). SimpleChIP® primers have been optimized for amplification of ChIP-isolated DNA using real-time quantitative PCR and provide important positive and negative controls that can be used to confirm a successful ChIP experiment.

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated BiP (C50B12) Rabbit mAb #3177.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Secretory and transmembrane proteins are synthesized on polysomes and translocated into the endoplasmic reticulum (ER). Inside the ER, these proteins are often modified by disulfide bond formation, amino-linked glycosylation and folding. To help proteins fold properly, the ER contains a pool of molecular chaperones including BiP. BiP was identified as an immunoglobulin heavy chain binding protein in pre-B cells (1,2). It was also found to be induced at the protein level by glucose starvation (3). When protein folding is disturbed inside ER, BiP synthesis is increased. Subsequently, BiP binds to misfolded proteins to prevent them from forming aggregates and assists in proper refolding (4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunohistochemistry (Frozen), Immunohistochemistry (Paraffin), Western Blotting

Background: Secretory and transmembrane proteins are synthesized on polysomes and translocated into the endoplasmic reticulum (ER). Inside the ER, these proteins are often modified by disulfide bond formation, amino-linked glycosylation and folding. To help proteins fold properly, the ER contains a pool of molecular chaperones including BiP. BiP was identified as an immunoglobulin heavy chain binding protein in pre-B cells (1,2). It was also found to be induced at the protein level by glucose starvation (3). When protein folding is disturbed inside ER, BiP synthesis is increased. Subsequently, BiP binds to misfolded proteins to prevent them from forming aggregates and assists in proper refolding (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Secretory and transmembrane proteins are synthesized on polysomes and translocated into the endoplasmic reticulum (ER). Inside the ER, these proteins are often modified by disulfide bond formation, amino-linked glycosylation and folding. To help proteins fold properly, the ER contains a pool of molecular chaperones including BiP. BiP was identified as an immunoglobulin heavy chain binding protein in pre-B cells (1,2). It was also found to be induced at the protein level by glucose starvation (3). When protein folding is disturbed inside ER, BiP synthesis is increased. Subsequently, BiP binds to misfolded proteins to prevent them from forming aggregates and assists in proper refolding (4).