20% off purchase of 3 or more products* | Learn More >>

Human Regulation of Tissue Remodeling

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Immunoprecipitation, Western Blotting

Background: Angiotensinogen (AGT) is the primary precursor of angiotensins, peptide hormones that play a central role in the renin-angiotensin system (RAS) (1-3). AGT is a secreted protein synthesized primarily by the liver and secreted into circulation. Upon binding to renin, the amino terminal fragment of AGT is cleaved and released as a decapeptide hormone termed angiotensin 1 (Ang I). Ang I is subsequently processed by angiotensin converting enzyme (ACE) to generate angiotensin II (Ang II), which acts on AT1 and AT2 receptors in the central nervous system to increase production of anti-diuretic hormone (ADH), while promoting vasoconstriction in the peripheral circulation (4). Aberrant upregulation of Ang II has been associated with numerous clinical conditions, including hypertension, atherosclerosis, myocardial hypertrophy, and obesity (5-7). Alternative cleavage products of Ang I (e.g., Ang 1-7) can also be generated by ACE2 cleavage, some of which display biological functions that are distinct from Ang II (8). Treatments that target the RAS (e.g., ACE inhibitors) are consequently of significant importance in the treatment of hypertensive and hypertensive-related disorders(5-8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunoprecipitation, Western Blotting

Background: Interleukin-2 (IL-2) is a T cell stimulatory cytokine best known for inducing T cell proliferation and NK cell proliferation and activation (1,2). IL-2 also promotes peripheral development of regulatory T cells (Tregs) (3,4). Conversely, IL-2 is involved in the activation-induced cell death (AICD) that is observed post T cell expansion by increasing levels of Fas on CD4+ T cells (5). The effects of IL-2 are mediated through a trimeric receptor complex consisting of IL-2Rα, IL-2Rβ, and the common gamma chain, γc (1,2). IL-2Rα binds exclusively to IL-2 with low affinity and increases the binding affinity of the whole receptor complex including IL-2Rβ and γc subunits. IL-15 also binds to IL-2Rβ (1,2). γc is used by other cytokines including IL-4, IL-7, IL-9, IL-15, and IL-21 (1,2). Binding of IL-2 initiates signaling cascades involving Jak1, Jak3, Stat5, and the PI3K/Akt pathways (1,2).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: The chondroitin sulfate proteoglycan NG2 is a type I membrane protein expressed by subpopulations of glia including oligodendroglial precursor cells and a variety of tumor cells. Normal precursor cells and malignant tumor cells migrate and proliferate, but there is evidence that cells may not be able to engage in both activities at the same time. However, NG2 is involved in promoting both proliferation and motility (1). The extracellular domain of NG2 sequesters growth factors and binds to both growth factor receptors and extracellular matrix ligands such as fibronectin, collagens and laminin. The cytoplasmic domain is involved in activating Rac, Cdc42 and p130 Cas (2). PKCα phosphorylates NG2 at Thr2256, triggering the redistribution of NG2 from apical microprocesses to lamellipodia accompanied by enhanced cell motility (3). ERK phosphorylates NG2 at Thr2314, stimulating cell proliferation (4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: The matrix metalloproteinase (MMP) family of proteases are a group of zinc-dependent enzymes that target extracellular proteins, including growth factors, cell surface receptors, adhesion molecules, and other proteases (1). Matrix metalloproteinases can be broadly categorized based on function and cellular localization, and include six distinct membrane-type (MT) metalloproteinases that share a transmembrane domain and short cytoplasmic tail (2). Membrane type-1 matrix metalloproteinase (MT1-MMP, MMP14) is involved in regulating development, angiogenesis, tissue remodeling, and tumor progression (3-6). MT1-MMP and other metalloproteinases promote tumor cell invasion by accumulating in specialized structures known as invadopodia, which remodel the ECM and allow tumor cells to breach the basement membrane (7). The abundance and presence of MT1-MMP at the cell surface is controlled by targeted endocytosis, which may be regulated by the MT1-MMP cytoplasmic domain (8). MT1-MMP protease activity can be further regulated through homodimer formation, autocatalytic processing, domain shedding and the interaction with inhibitory proteins. Activation of the MT1-MMP proenzyme results from cleavage of full-length MT1-MMP by furin in the trans-Golgi network, which removes the inhibitory propeptide domain (9). At the cell surface, MT1-MMP can be found in a protein complex with the soluble metalloproteinase MMP2 and the MMP inhibitor TIMP2. MT1-MMP mediated cleavage and activation of MMP2 generates the active MMP2 collagenase, which plays important roles in ECM remodeling and tumor invasion (10). MT1-MMP interacts with a large number of substrates in addition to MMP2, including interstitial collagens, adhesive glycoproteins (i.e. laminin), and cell surface receptors (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: Methyl-CpG-binding protein 2 (MeCP2) is the founding member of a family of methyl-CpG-binding domain (MBD) proteins that also includes MBD1, MBD2, MBD3, MBD4, MBD5 and MBD6 (1-3). Apart from MBD3, these proteins bind methylated cytosine residues in the context of the di-nucleotide 5´-CG-3´ to establish and maintain regions of transcriptionally inactive chromatin by recruiting a variety of co-repressor proteins (2). MeCP2 recruits histone deacetylases HDAC1 and HDAC2, and the DNA methyltransferase DNMT1 (4-6). MBD1 couples transcriptional silencing to DNA replication and interacts with the histone methyltransferases ESET and SUV39H1 (7,8). MBD2 and MBD3 co-purify as part of the NuRD (nucleosome remodeling and histone de-acetylation) co-repressor complex, which contains the chromatin remodeling ATPase Mi-2, HDAC1 and HDAC2 (9,10). MBD5 and MBD6 have recently been identified and little is known regarding their protein interactions. MBD proteins are associated with cancer and other diseases; MBD4 is best characterized for its role in DNA repair and MBD2 has been linked to intestinal cancer (11,12). Mutations in the MeCP2 gene cause the neurologic developmental disorder Rett Syndrome (13). MeCP2 protein levels are high in neurons, where it plays a critical role in multiple synaptic processes (14). In response to various physiological stimuli, MeCP2 is phosphorylated on Ser421 and regulates the expression of genes controlling dendritic patterning and spine morphogenesis (14). Disruption of this process in individuals with altered MeCP2 may cause the pathological changes seen in Rett Syndrome.

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunoprecipitation, Western Blotting

Background: Bax is a key component for cellular induced apoptosis through mitochondrial stress (1). Upon apoptotic stimulation, Bax forms oligomers and translocates from the cytosol to the mitochondrial membrane (2). Through interactions with pore proteins on the mitochondrial membrane, Bax increases the membrane's permeability, which leads to the release of cytochrome c from mitochondria, activation of caspase-9 and initiation of the caspase activation pathway for apoptosis (3,4).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: Bax is a key component for cellular induced apoptosis through mitochondrial stress (1). Upon apoptotic stimulation, Bax forms oligomers and translocates from the cytosol to the mitochondrial membrane (2). Through interactions with pore proteins on the mitochondrial membrane, Bax increases the membrane's permeability, which leads to the release of cytochrome c from mitochondria, activation of caspase-9 and initiation of the caspase activation pathway for apoptosis (3,4).

$111
20 µl
$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Immunoprecipitation, Western Blotting

Background: The Bcl-2 family consists of a number of evolutionarily conserved proteins containing Bcl-2 homology domains (BH) that regulate apoptosis through control of mitochondrial membrane permeability and release of cytochrome c (1-3). Four BH domains have been identified (BH1-4) that mediate protein interactions. The family can be separated into three groups based upon function and sequence homology: pro-survival members include Bcl-2, Bcl-xL, Mcl-1, A1 and Bcl-w; pro-apoptotic proteins include Bax, Bak and Bok; and "BH3 only" proteins Bad, Bik, Bid, Puma, Bim, Bmf, Noxa and Hrk. Interactions between death-promoting and death-suppressing Bcl-2 family members has led to a rheostat model in which the ratio of pro-apoptotic and anti-apoptotic proteins controls cell fate (4). Thus, pro-survival members exert their behavior by binding to and antagonizing death-promoting members. In general, the "BH3-only members" can bind to and antagonize the pro-survival proteins leading to increased apoptosis (5). While some redundancy of this system likely exists, tissue specificity, transcriptional and post-translational regulation of many of these family members can account for distinct physiological roles.

$262
3 nmol
300 µl
SignalSilence® Bax siRNA II from Cell Signaling Technology (CST) allows the researcher to specifically inhibit Bax expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products from CST are rigorously tested in-house and have been shown to reduce protein expression by western analysis.
REACTIVITY
Human

Background: Bax is a key component for cellular induced apoptosis through mitochondrial stress (1). Upon apoptotic stimulation, Bax forms oligomers and translocates from the cytosol to the mitochondrial membrane (2). Through interactions with pore proteins on the mitochondrial membrane, Bax increases the membrane's permeability, which leads to the release of cytochrome c from mitochondria, activation of caspase-9 and initiation of the caspase activation pathway for apoptosis (3,4).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to phycoerythrin (PE) and tested in-house for direct flow cytometry analysis in human cells. This antibody is expected to exhibit the same species cross-reactivity as the unconjugated Sox9 (D8G9H) Rabbit mAb #82630.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry

Background: Sox9 is a transcription factor with an HMG-box DNA binding domain that has homology to the HMG domain of the mammalian testis-determining factor, SRY (1). Sox9 regulates several important processes during embryonic development including chondrogenesis, during which it contributes to skeletal formation and digit specification (2,3). Sox9 also coordinates with steroidogenic factor-1 to direct Sertoli cell-specific expression of anti-Mullerian hormone during embryogenesis, thereby contributing to male sex determination (4). In addition, Sox9 is reportedly involved in the maintenance of adult stem cell populations, including multipotent neural stem cells (5), hair follicle stem cells (6), and mammary stem cells (7). Recent interest has focused on the role of Sox9 in tumor biology. For example, research studies have shown that Sox9 expression in lung adenocarcinoma induces a mesenchymal phenotype in tumor cells (8). Other research studies have shown that YAP1 induced upregulation of Sox9 confers cancer stem cell like properties on esophageal cancer cells (9). Moreover, Sox9 expression has been linked with several other tumor types including ovarian, prostate, and pancreatic malignancies (10-12).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 488 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Sox9 (D8G8H) Rabbit mAb #82630.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Sox9 is a transcription factor with an HMG-box DNA binding domain that has homology to the HMG domain of the mammalian testis-determining factor, SRY (1). Sox9 regulates several important processes during embryonic development including chondrogenesis, during which it contributes to skeletal formation and digit specification (2,3). Sox9 also coordinates with steroidogenic factor-1 to direct Sertoli cell-specific expression of anti-Mullerian hormone during embryogenesis, thereby contributing to male sex determination (4). In addition, Sox9 is reportedly involved in the maintenance of adult stem cell populations, including multipotent neural stem cells (5), hair follicle stem cells (6), and mammary stem cells (7). Recent interest has focused on the role of Sox9 in tumor biology. For example, research studies have shown that Sox9 expression in lung adenocarcinoma induces a mesenchymal phenotype in tumor cells (8). Other research studies have shown that YAP1 induced upregulation of Sox9 confers cancer stem cell like properties on esophageal cancer cells (9). Moreover, Sox9 expression has been linked with several other tumor types including ovarian, prostate, and pancreatic malignancies (10-12).

$305
100 µl
This Cell Signaling Technology antibody is conjugated to biotin under optimal conditions. The biotinylated antibody is expected to exhibit the same species cross-reactivity as the unconjugated Sox9 (D8G9H) Rabbit mAb #82630.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Western Blotting

Background: Sox9 is a transcription factor with an HMG-box DNA binding domain that has homology to the HMG domain of the mammalian testis-determining factor, SRY (1). Sox9 regulates several important processes during embryonic development including chondrogenesis, during which it contributes to skeletal formation and digit specification (2,3). Sox9 also coordinates with steroidogenic factor-1 to direct Sertoli cell-specific expression of anti-Mullerian hormone during embryogenesis, thereby contributing to male sex determination (4). In addition, Sox9 is reportedly involved in the maintenance of adult stem cell populations, including multipotent neural stem cells (5), hair follicle stem cells (6), and mammary stem cells (7). Recent interest has focused on the role of Sox9 in tumor biology. For example, research studies have shown that Sox9 expression in lung adenocarcinoma induces a mesenchymal phenotype in tumor cells (8). Other research studies have shown that YAP1 induced upregulation of Sox9 confers cancer stem cell like properties on esophageal cancer cells (9). Moreover, Sox9 expression has been linked with several other tumor types including ovarian, prostate, and pancreatic malignancies (10-12).

$262
50-100 transfections
300 µl
SignalSilence® Bax siRNA I from Cell Signaling Technology (CST) allows the researcher to specifically inhibit Bax expression using RNA interference, a method whereby gene expression can be selectively silenced through the delivery of double stranded RNA molecules into the cell. All SignalSilence® siRNA products are rigorously tested in-house and have been shown to reduce target protein expression by western analysis.
REACTIVITY
Human

Background: Bax is a key component for cellular induced apoptosis through mitochondrial stress (1). Upon apoptotic stimulation, Bax forms oligomers and translocates from the cytosol to the mitochondrial membrane (2). Through interactions with pore proteins on the mitochondrial membrane, Bax increases the membrane's permeability, which leads to the release of cytochrome c from mitochondria, activation of caspase-9 and initiation of the caspase activation pathway for apoptosis (3,4).

$305
50 tests
100 µl
This Cell Signaling Technology antibody is conjugated to Alexa Fluor® 647 fluorescent dye and tested in-house for direct flow cytometry and immunofluorescent analysis in human cells. The antibody is expected to exhibit the same species cross-reactivity as the unconjugated Sox9 (D8G9H) Rabbit mAb #82630.
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry)

Background: Sox9 is a transcription factor with an HMG-box DNA binding domain that has homology to the HMG domain of the mammalian testis-determining factor, SRY (1). Sox9 regulates several important processes during embryonic development including chondrogenesis, during which it contributes to skeletal formation and digit specification (2,3). Sox9 also coordinates with steroidogenic factor-1 to direct Sertoli cell-specific expression of anti-Mullerian hormone during embryogenesis, thereby contributing to male sex determination (4). In addition, Sox9 is reportedly involved in the maintenance of adult stem cell populations, including multipotent neural stem cells (5), hair follicle stem cells (6), and mammary stem cells (7). Recent interest has focused on the role of Sox9 in tumor biology. For example, research studies have shown that Sox9 expression in lung adenocarcinoma induces a mesenchymal phenotype in tumor cells (8). Other research studies have shown that YAP1 induced upregulation of Sox9 confers cancer stem cell like properties on esophageal cancer cells (9). Moreover, Sox9 expression has been linked with several other tumor types including ovarian, prostate, and pancreatic malignancies (10-12).

$115
20 µl
$269
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse

Application Methods: Flow Cytometry, Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Sox9 is a transcription factor with an HMG-box DNA binding domain that has homology to the HMG domain of the mammalian testis-determining factor, SRY (1). Sox9 regulates several important processes during embryonic development including chondrogenesis, during which it contributes to skeletal formation and digit specification (2,3). Sox9 also coordinates with steroidogenic factor-1 to direct Sertoli cell-specific expression of anti-Mullerian hormone during embryogenesis, thereby contributing to male sex determination (4). In addition, Sox9 is reportedly involved in the maintenance of adult stem cell populations, including multipotent neural stem cells (5), hair follicle stem cells (6), and mammary stem cells (7). Recent interest has focused on the role of Sox9 in tumor biology. For example, research studies have shown that Sox9 expression in lung adenocarcinoma induces a mesenchymal phenotype in tumor cells (8). Other research studies have shown that YAP1 induced upregulation of Sox9 confers cancer stem cell like properties on esophageal cancer cells (9). Moreover, Sox9 expression has been linked with several other tumor types including ovarian, prostate, and pancreatic malignancies (10-12).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: Transforming growth factor-β (TGF-β) superfamily members are critical regulators of cell proliferation and differentiation, developmental patterning and morphogenesis, and disease pathogenesis (1-4). TGF-β elicits signaling through three cell surface receptors: type I (RI), type II (RII), and type III (RIII). Type I and type II receptors are serine/threonine kinases that form a heteromeric complex. In response to ligand binding, the type II receptors form a stable complex with the type I receptors allowing phosphorylation and activation of type I receptor kinases (5). The type III receptor, also known as betaglycan, is a transmembrane proteoglycan with a large extracellular domain that binds TGF-β with high affinity but lacks a cytoplasmic signaling domain (6,7). Expression of the type III receptor can regulate TGF-β signaling through presentation of the ligand to the signaling complex. The only known direct TGF-β signaling effectors are the Smad family proteins, which transduce signals from the cell surface directly to the nucleus to regulate target gene transcription (8,9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Transforming growth factor-β (TGF-β) superfamily members are critical regulators of cell proliferation and differentiation, developmental patterning and morphogenesis, and disease pathogenesis (1-4). TGF-β elicits signaling through three cell surface receptors: type I (RI), type II (RII), and type III (RIII). Type I and type II receptors are serine/threonine kinases that form a heteromeric complex. In response to ligand binding, the type II receptors form a stable complex with the type I receptors allowing phosphorylation and activation of type I receptor kinases (5). The type III receptor, also known as betaglycan, is a transmembrane proteoglycan with a large extracellular domain that binds TGF-β with high affinity but lacks a cytoplasmic signaling domain (6,7). Expression of the type III receptor can regulate TGF-β signaling through presentation of the ligand to the signaling complex. The only known direct TGF-β signaling effectors are the Smad family proteins, which transduce signals from the cell surface directly to the nucleus to regulate target gene transcription (8,9).