Microsize antibodies for $99 | Learn More >>

Human Response to Water Deprivation

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Aquaporin 2 (AQP2) is a water transport protein that forms water channels in kidney tubules and plays a predominant role in controlling organism water homeostasis (1). Members of the aquaporin family are multiple pass transmembrane proteins that form homotetramers to facilitate the flow of water across the plasma membrane. At least thirteen aquaporins have been indentified to date (AQP0 through AQP12) and together this family of small, hydrophobic proteins plays a role in an array of biological processes that include urine formation, cell motility, fertilization, cell junction formation and regulation of overall water homeostasis (2). AQP2 tetramers form water channels that facilitate water transport and excretion in the kidney (3). This transport protein is localized to the plasma membrane is response to endocrine signaling. Posterior pituitary hormones arginine vasopressin (AVP) and ADH regulate osmotic water cell permeability by triggering phosphorylation and subsequent exocytosis of AQP2 (1,4). Mutations in the corresponding AQP2 gene cause a rare form of diabetes known as nephrogenic diabetes insipidus. This autosomal dominant disorder is characterized by abnormal water reabsorption by kidney tubules due, in part, to either nonfunctional or mislocalized AQP2 protein (5).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Western Blotting

Background: The CD9 antigen belongs to the tetraspanin family of cell surface glycoproteins, and is characterized by four transmembrane domains, one short extracellular domain (ECL1), and one long extracellular domain (ECL2). Tetraspanins interact with a variety of cell surface proteins and intracellular signaling molecules in specialized tetraspanin-enriched microdomains (TEMs), where they mediate a range of processes including adhesion, motility, membrane organization, and signal transduction (1). Research studies demonstrate that CD9 expression on the egg is required for gamete fusion during fertilization (2-4). CD9 was also shown to play a role in dendritic cell migration, megakaryocyte differentiation, and homing of cord blood CD34+ hematopoietic progenitors to the bone marrow (5-7). In addition, down regulation of CD9 expression is associated with poor prognosis and progression of several types of cancer (8-10). Additional research identified CD9 as an abundant component of exosomes, and may play some role in the fusion of these secreted membrane vesicles with recipient cells (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human

Application Methods: Immunohistochemistry (Paraffin), Western Blotting

Background: The CD9 antigen belongs to the tetraspanin family of cell surface glycoproteins, and is characterized by four transmembrane domains, one short extracellular domain (ECL1), and one long extracellular domain (ECL2). Tetraspanins interact with a variety of cell surface proteins and intracellular signaling molecules in specialized tetraspanin-enriched microdomains (TEMs), where they mediate a range of processes including adhesion, motility, membrane organization, and signal transduction (1). Research studies demonstrate that CD9 expression on the egg is required for gamete fusion during fertilization (2-4). CD9 was also shown to play a role in dendritic cell migration, megakaryocyte differentiation, and homing of cord blood CD34+ hematopoietic progenitors to the bone marrow (5-7). In addition, down regulation of CD9 expression is associated with poor prognosis and progression of several types of cancer (8-10). Additional research identified CD9 as an abundant component of exosomes, and may play some role in the fusion of these secreted membrane vesicles with recipient cells (11).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Western Blotting

Background: The sequence-specific transcription factor activator protein 2α (AP-2α) is required for normal growth and morphogenesis during mammalian development (1,2). Decreased or loss of AP-2α expression has been observed in many different types of human cancers including breast cancer (3,4), ovarian cancer (5), melanoma (6) and prostate cancer (7). These findings suggest that AP-2α expression plays a crucial role in tumorigenicity. Studies have also shown that p53 overexpression in human breast carcinoma cells induces the level of AP-2α expression. Furthermore, p53 binds to the cis-element in the AP-2α promoter, suggesting that AP-2α is a target of p53. AP-2α may mediate the effect of p53 to inhibit cell proliferation (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Monkey, Mouse, Rat

Application Methods: Immunofluorescence (Immunocytochemistry), Western Blotting

Background: The sequence-specific transcription factor activator protein 2α (AP-2α) is required for normal growth and morphogenesis during mammalian development (1,2). Decreased or loss of AP-2α expression has been observed in many different types of human cancers including breast cancer (3,4), ovarian cancer (5), melanoma (6) and prostate cancer (7). These findings suggest that AP-2α expression plays a crucial role in tumorigenicity. Studies have also shown that p53 overexpression in human breast carcinoma cells induces the level of AP-2α expression. Furthermore, p53 binds to the cis-element in the AP-2α promoter, suggesting that AP-2α is a target of p53. AP-2α may mediate the effect of p53 to inhibit cell proliferation (8).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Western Blotting

Background: Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of the neurotransmitter dopamine and other catecholamines. TH functions as a tetramer, with each subunit composed of a regulatory and catalytic domain, and exists in several different isoforms (1,2). This enzyme is required for embryonic development since TH knockout mice die before or at birth (3). Levels of transcription, translation and posttranslational modification regulate TH activity. The amino-terminal regulatory domain contains three serine residues: Ser9, Ser31 and Ser40. Phosphorylation at Ser40 by PKA positively regulates the catalytic activity of TH (4-6). Phosphorylation at Ser31 by CDK5 also increases the catalytic activity of TH through stabilization of TH protein levels (7-9).

$269
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Immunohistochemistry (Paraffin), Western Blotting

Background: Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of the neurotransmitter dopamine and other catecholamines. TH functions as a tetramer, with each subunit composed of a regulatory and catalytic domain, and exists in several different isoforms (1,2). This enzyme is required for embryonic development since TH knockout mice die before or at birth (3). Levels of transcription, translation and posttranslational modification regulate TH activity. The amino-terminal regulatory domain contains three serine residues: Ser9, Ser31 and Ser40. Phosphorylation at Ser40 by PKA positively regulates the catalytic activity of TH (4-6). Phosphorylation at Ser31 by CDK5 also increases the catalytic activity of TH through stabilization of TH protein levels (7-9).

$260
100 µl
APPLICATIONS
REACTIVITY
Human, Mouse, Rat

Application Methods: Immunofluorescence (Frozen), Immunofluorescence (Immunocytochemistry), Western Blotting

Background: Tyrosine hydroxylase (TH) catalyzes the rate-limiting step in the synthesis of the neurotransmitter dopamine and other catecholamines. TH functions as a tetramer, with each subunit composed of a regulatory and catalytic domain, and exists in several different isoforms (1,2). This enzyme is required for embryonic development since TH knockout mice die before or at birth (3). Levels of transcription, translation and posttranslational modification regulate TH activity. The amino-terminal regulatory domain contains three serine residues: Ser9, Ser31 and Ser40. Phosphorylation at Ser40 by PKA positively regulates the catalytic activity of TH (4-6). Phosphorylation at Ser31 by CDK5 also increases the catalytic activity of TH through stabilization of TH protein levels (7-9).