20% off purchase of 3 or more products* | Learn More >>

IHC Control Slides Chemotaxis

Also showing IHC Control Slides Activation of MAPK Activity, IHC Control Slides Positive Chemotaxis

Each control slide contains formalin fixed, paraffin-embedded NIH/3T3 cells, treated with either U0126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene) #9903 or TPA (12-O-Tetradecanoylphorbol-13-Acetate) #4174 , that serve as a control for phospho-p44/42 MAPK (Thr202/Tyr204) immunostaining. U0126 has been shown to be a highly selective inhibitor of MEK1 and MEK2. TPA induces phosphorylation of p44/42 MAPK. Western blot analysis was performed on extracts derived from the same cells to verify the efficacy of the U0126 and TPA treatments.To be used with antibodies: 4370, 4376, 4695, 4696, 9102, 9108.

Background: Mitogen-activated protein kinases (MAPKs) are a widely conserved family of serine/threonine protein kinases involved in many cellular programs, such as cell proliferation, differentiation, motility, and death. The p44/42 MAPK (Erk1/2) signaling pathway can be activated in response to a diverse range of extracellular stimuli including mitogens, growth factors, and cytokines (1-3), and research investigators consider it an important target in the diagnosis and treatment of cancer (4). Upon stimulation, a sequential three-part protein kinase cascade is initiated, consisting of a MAP kinase kinase kinase (MAPKKK or MAP3K), a MAP kinase kinase (MAPKK or MAP2K), and a MAP kinase (MAPK). Multiple p44/42 MAP3Ks have been identified, including members of the Raf family, as well as Mos and Tpl2/COT. MEK1 and MEK2 are the primary MAPKKs in this pathway (5,6). MEK1 and MEK2 activate p44 and p42 through phosphorylation of activation loop residues Thr202/Tyr204 and Thr185/Tyr187, respectively. Several downstream targets of p44/42 have been identified, including p90RSK (7) and the transcription factor Elk-1 (8,9). p44/42 are negatively regulated by a family of dual-specificity (Thr/Tyr) MAPK phosphatases, known as DUSPs or MKPs (10), along with MEK inhibitors, such as U0126 and PD98059.

Each control slide contains formalin fixed, paraffin-embedded MKN45 cells, both untreated and treated with the c-Met inhibitor SU11274, that serve as a control for Phospho-Met (Tyr1234/1235) immunostaining. Western blot analysis was performed on extracts derived from the same cells to verify the efficacy of the SU11274 treatment.To be used with antibodies: 3077.

Background: Met, a high affinity tyrosine kinase receptor for hepatocyte growth factor (HGF, also known as scatter factor) is a disulfide-linked heterodimer made of 45 kDa α- and 145 kDa β-subunits (1,2). The α-subunit and the amino-terminal region of the β-subunit form the extracellular domain. The remainder of the β-chain spans the plasma membrane and contains a cytoplasmic region with tyrosine kinase activity. Interaction of Met with HGF results in autophosphorylation at multiple tyrosines, which recruit several downstream signaling components, including Gab1, c-Cbl, and PI3 kinase (3). These fundamental events are important for all of the biological functions involving Met kinase activity. The addition of a phosphate at cytoplasmic Tyr1003 is essential for Met protein ubiquitination and degradation (4). Phosphorylation at Tyr1234/1235 in the Met kinase domain is critical for kinase activation. Phosphorylation at Tyr1349 in the Met cytoplasmic domain provides a direct binding site for Gab1 (5). Research studies have shown that altered Met levels and/or tyrosine kinase activities are found in several types of tumors, including renal, colon, and breast. Thus, investigators have concluded that Met is an attractive potential cancer therapeutic and diagnostic target (6,7).